10 research outputs found

    An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: a genotype-phenotype study.

    No full text
    L-2-Hydroxyglutaric aciduria (L2HGA) is a rare, neurometabolic disorder with an autosomal recessive mode of inheritance. Affected individuals only have neurological manifestations, including psychomotor retardation, cerebellar ataxia, and more variably macrocephaly, or epilepsy. The diagnosis of L2HGA can be made based on magnetic resonance imaging (MRI), biochemical analysis, and mutational analysis of L2HGDH. About 200 patients with elevated concentrations of 2-hydroxyglutarate (2HG) in the urine were referred for chiral determination of 2HG and L2HGDH mutational analysis. All patients with increased L2HG (n=106; 83 families) were included. Clinical information on 61 patients was obtained via questionnaires. In 82 families the mutations were detected by direct sequence analysis and/or multiplex ligation dependent probe amplification (MLPA), including one case where MLPA was essential to detect the second allele. In another case RT-PCR followed by deep intronic sequencing was needed to detect the mutation. Thirty-five novel mutations as well as 35 reported mutations and 14 nondisease-related variants are reviewed and included in a novel Leiden Open source Variation Database (LOVD) for L2HGDH variants (http://www.LOVD.nl/L2HGDH). Every user can access the database and submit variants/patients. Furthermore, we report on the phenotype, including neurological manifestations and urinary levels of L2HG, and we evaluate the phenotype-genotype relationship

    Extracerebellar MRI-lesions in ataxia telangiectasia go along with deficiency of the GH/IGF-1 axis, markedly reduced body weight, high ataxia scores and advanced age

    Full text link
    Ataxia telangiectasia (AT) is a rare autosomal recessive disorder characterized by progressive ataxia, neurodegeneration, immunodeficiency, and cancer predisposition. Pathoanatomical studies reported a degeneration of cerebellar Purkinje cells as the striking feature of the disease. Although recent studies suggested the involvement of extracerebellar structures such as the brainstem and basal ganglia, this has rarely been studied in human AT. Thus, we performed a detailed cliniconeuroradiological investigation of 11 AT patients, aged 8 to 26 years by collecting clinical neurological data, ataxia scores, growth status, body mass index (BMI), growth hormone (GH), and insulin-like-growth factor 1 (IGF-1) and correlated them to extracerebellar neuroimaging findings in human AT. Neuroimaging was done by cranial and spine magnetic resonance imaging (MRI) with T1- and T2-weighted spin-echo and fluid attenuated inversion recovery sequences. We compared clinical and neuroradiological findings of six patients with IGF-1 levels and BMI below the third percentile to five patients with normal IGF-1 serum levels and BMI above the third percentile. Three of the six first mentioned patients older than 20 years and two patients older than 12 years showed noticeable high Klockgether ataxia scores above 25 points. Three of these patients presented with marked hyperintense lesions in the cerebral white matter of T2-weighted MR images. Interestingly, all six patients suffered from marked spinal atrophy. Two of the patients presented with severe extra-pyramidal symptoms, but only one patient showed associated MRI abnormalities of the basal ganglia. MRI in patients with normal IGF-1 levels showed the expected cerebellar lesions in four patients, whereas spinal atrophy was found only in two patients. There was no affection of the cerebral white matter or basal ganglia in this group. We conclude that central cerebral white matter affection, spinal atrophy, and extrapyramidal symptoms are more often present in patients with pronounced deficiency of the GH/IGF-1 axis accompanied by markedly reduced body weight and high ataxia scores. This may point to a major role of IGF-1 and nutritional status in neuroprotective signaling
    corecore