210 research outputs found

    Parametric Generation of Subharmonics in a Composite Multiferroic Resonator

    Get PDF
    Parametric generation of subharmonics in a composite multiferroic resonator is observed and investigated. The resonator has the form of a disk and contains two mechanically coupled layers, one of which is amorphous ferromagnet Fe-B-Si-C and the other piezoelectric lead zirconate titanate. The resonator is placed inside two planar electromagnetic coils with orthogonal axes. A static magnetic field of 0-100 Oe is applied parallel to the plane of the resonator. The resonator is excited in the frequency range f = 9-10 kHz by either a harmonic magnetic field with an amplitude of up to 5 Oe generated by one of the coils, or a harmonic electric field with an amplitude of up to 500 V/cm applied to the piezoelectric layer. When the pump field is above a certain threshold, generation of a subharmonic of half-frequency (f/2) is observed for three different excitation methods. The first two employed either the direct magnetoelectric effect or the converse magnetoelectric effect, while in the third a transformer system is utilized. The subharmonic is generated in a limited range of pump frequencies and its amplitude is a nonlinear function of both the pump-field amplitude and the strength of static magnetic field. A theory of parametric generation of the subharmonic in a multiferroic resonator is developed, taking into account the magnetoacoustic nonlinearity of the ferromagnetic layer of the structure and excitation of acoustic resonances near the pump and subharmonic frequencies. The theory qualitatively describes the main characteristics of the subharmonic generation.</p

    Interaction of surface acoustic waves with a two-dimensional electron gas in the presence of spin splitting of the Landau bands

    Full text link
    The absorption and variation of the velocity of a surface acoustic wave of frequency ff= 30 MHz interacting with two-dimensional electrons are investigated in GaAs/AlGaAs heterostructures with an electron density n=(1.32.8)×1011cm2n=(1.3 - 2.8) \times 10^{11} cm^{-2} at TT=1.5 - 4.2 K in magnetic fields up to 7 T. Characteristic features associated with spin splitting of the Landau level are observed. The effective g factor and the width of the spin-split Landau bands are determined: g5g^* \simeq 5 and AA=0.6 meV. The greater width of the orbital-split Landau bands (2 meV) relative to the spin-split bands is attributed to different shielding of the random fluctuation potential of charged impurities by 2D electrons. The mechanisms of the nonlinearities manifested in the dependence of the absorption and the velocity increment of the SAW on the SAW power in the presence of spin splitting of the Landau levels are investigated.Comment: Revtex 5 pages + 5 EPS Figures, v.2 - minor corrections in text and pic

    Kinetics of exciton photoluminescence in type-II semiconductor superlattices

    Full text link
    The exciton decay rate at a rough interface in type-II semiconductor superlattices is investigated. It is shown that the possibility of recombination of indirect excitons at a plane interface essentially affects kinetics of the exciton photoluminescence at a rough interface. This happens because of strong correlation between the exciton recombination at the plane interface and at the roughness. Expressions that relate the parameters of the luminescence kinetics with statistical characteristics of the rough interface are obtained. The mean height and length of roughnesses in GaAs/AlAs superlattices are estimated from the experimental data.Comment: 3 PostScript figure

    Ferromagnetic HfO2/Si/GaAs interface for spin-polarimetry applications

    Get PDF
    In this letter, we present electrical and magnetic characteristics of HfO2-based metal-oxide-semiconductor capacitors (MOSCAPs), along with the effect of pseudomorphic Si as a passivating interlayer on GaAs(001) grown by molecular beam epitaxy. Ultrathin HfO2 high-k gate dielectric films (3–15 nm) have been grown on Si/GaAs(001) structures through evaporation of a Hf/HfO2 target in NO2 gas. The lowest interface states density Dit at Au/HfO2/Si/GaAs(001) MOS-structures were obtained in the range of (6−13)×101

    Optimization of the Calendar Plan for Construction Works

    Full text link
    Сформулированы методы количественного описания опережения, совмещения и запаздывания строительных работ в пространстве и времени. Определена верхняя граница числа коэффициентов, описывающих пространственно-технологические связи работ. Получена полная система уравнений, описывающих условия полного выполнения работ в зависимости от способа их упорядочения. Определены ограничения на коэффициенты уравнений, учитывающие дискретный характер нескладируемых ресурсов, объемов работ и временных интервалов планирования. Проанализирован конкретный пример рационального выбора коэффициентов. Сформулирован алгоритм получения допустимых наборов коэффициентов, учитывающий наличие резервов времени выполнения различных этапов работ.This paper formulates some methods of quantitative description of construction works lead time, delay time and their reconciliation in space and time. The results presented define the top bound of number of coefficients, describing the spatial-technological work relations with a complete system of equations describing the conditions for construction works fulfillment depending on the ways of their organization. The paper presents the limitations on the coefficients of equations, taking into account the discrete nature of non-stock resources, work volumes and planning time slots. The specific example of the rational choice of coefficients has been analyzed. Algorithm for obtaining of allowable coefficients sets has been formulated, taking into account the availability of run-time reserves for various construction work stages
    corecore