733 research outputs found

    On temperature-dependent anisotropies of upper critical field and London penetration depth

    Get PDF
    We show on a few examples of one-band materials with spheroidal Fermi surfaces and anisotropic order parameters that anisotropies γH\gamma_H of the upper critical field and γλ\gamma_\lambda of the London penetration depth depend on temperature, the feature commonly attributed to multi-band superconductors. The parameters γH\gamma_H and γλ\gamma_\lambda may have opposite temperature dependencies or may change in the same direction depending on Fermi surface shape and on character of the gap nodes. For two-band systems, the behavior of anisotropies is affected by the ratios of bands densities of states, Fermi velocities, anisotropies, and order parameters. We investigate in detail the conditions determining the directions of temperature dependences of the two anisotropy factors

    Anthropogenic load іs a leading factor in the morphological variability of Chondrula tridens (Gastropoda, Enidae) in the northwestern Azov Sea region

    Get PDF
    Morphometric data are widely used in biology to assess intraspecific and inter-population variability and for bioindication and environmental condition assessment. The following hypotheses have been experimentally tested in the paper: 1) the vegetation type affects the change in the shell shape of Chondrula tridens martynovi Gural-Sverlova & Gural, 2010; 2) the change in the shell shape of this species is influenced by the biotope moisture regime; 3) the shell shape changes depending on the anthropogenic load level. The material in the form of empty, fully formed Ch. tridens shells was collected in 2019 in the north-western Azov region within the basin of the Molochna River. The collection points were located in settlements and outside them and differed in vegetation, moisture regime and level of anthropogenic load. The vegetation has been expertly attributed to two alternative types: herbaceous vegetation and tree plantations. By moisture level, the locations have been assessed as xerophytic and mesoxerophytic. The anthropogenic load levels have been assessed as low, medium and high. The study revealed that the morphological characteristics of Ch. tridens demonstrate a significant component of variability, which is due to the shell size. The shell size depends on the anthropogenic impact level. Under conditions of high anthropogenic impact, the shell size increases. Mollusks from locations with low and medium anthropogenic impact levels did not differ in shell size. After extraction of the size component, morphological properties develop three main trends of variability. The mouth apparatus development of mollusks does not depend on the vegetation type, but depends on the biotope moisture level and the anthropogenic transformation level. The mollusk shell elongation was observed to have the opposite dynamics of the height parameters in relation to the width and depended on the level of anthropogenic load. Rearrangement in the mouth apparatus depended on the biotope moisture level and the anthropogenic load level. There were distinguished four clusters, the quantitative morphological features of which allowed us to identify them as morphotypes. Each location was characterized by a combination of different morphotypes, according to which the sampling points may be classified. Morphotype 1 corresponds to biotopes with low level of anthropogenic load, morphotype 4 corresponded to biotopes with high anthropogenic load. Morphotypes 2 and 3 corresponded to moderate level of anthropogenic load. Vegetation type is not an important factor in determining the morphotypic diversity of populations. Under xerophytic conditions, morphotypes 2 and 3 are more common, and under mesoxerophytic conditions, morphotypes 1 and 4 are more common. The range of molluscs in different habitats needs to be expanded in the future to clarify climatic and other patterns

    Time turnover of species in bird communities: the role of landscape diversity and climate change

    Get PDF
    The challenge of searching for patterns of species turnover dynamics in communities of living organisms is directly related to solving problems of stability and functioning of ecosystems. Avian communities are an essential structural and functional component of terrestrial and aquatic ecosystems which are highly diverse and play an important role in a wide range of ecosystem functions. The issue of changes in the dynamics of amphibiotic landscape complexes, where terrestrial and aquatic ecosystems conjugate, is practically not solved. In this connection, a study was carried out within a landscape system, which presents terrestrial and aquatic ecosystems that were in different degrees of anthropogenic transformation. The dynamics of bird communities was considered in the context of recent global climate change. The investigation was conducted in the landscapes of the south and south-east of Ukraine in the nesting seasons 1988–2018. Within the landscape system associated with the Molochny estuary, the ten most important types of ecosystems were distinguished, which included : agricultural lands, artificial forest belts, meadows, islands and spits, reed beds, urban areas, solonchaks, steppe, cliffs, artificial forests. The temporal turnover of the bird communities was decomposed into two parts: the first term (D1) related to the amount of change in community composition, and the second term (D2) being dependent only on the amount of change in community size sensu its abundance. The contribution ratio of the species and of the environment variable were calculated to identify drivers that influence the turnover measure. The average annual temperature and the sum of annual temperatures were considered as environment variables. The bird metacommunity of the studied landscape system was represented by 132 species from 86 genera, 42 families and 13 orders. During the research period the average annual temperature varied from 9.5 to 12.5 ˚C. and the temperature dynamics were subject to the linear trend. An oscillatory component was also present in the temperature dynamics. The annual rainfall ranged 220–761 mm. A coherent change in precipitation and temperature was observed in the period until 2011. After that, the temperature growth stabilized and the amount of precipitation began to fall sharply. The steppe bird community was represented by an extremely small number of species, but demonstrated the ability to maintain a stable structure for a long time. The main fluctuations of the community were quantitative changes in abundance, while the turnover of species was practically absent. Species of the community replace each other cyclically, but there were no targeted changes in community structure. Temperature and precipitation were the main drivers of the bird community in the steppe. The bird communities on salt marshes were characterized by a stable abundance, but a constant directed turnover of species. Reduced water levels and the disappearance of islands in the salt marshes increased the risk of threats from predators, which could lead to a decrease in the abundance of some species. The islands and spits were characterized by high species turnover with quasi-cyclical population dynamics. The main feature of the community dynamics was a decrease in the role of precipitation and an increase in the role of the time factor. The role of temperature remained stably low. The species richness of bird communities in agrarian lands was higher than in steppe communities. The turnover measure was significant because of the increased abundance of Alauda arvensis. Over time, the role of precipitation in the community dynamics has been decreasing and the role of time has been increasing. The value of temperature varied, but was at a stationary level. The turnover of species was compensated by an increase in the abundance of bird communities. The obtained results are in line with findings indicating that despite more stable land use intensities in recent years, climate change has not overtaken land use intensities as the main driver of bird population dynamics

    Plasmonic shock waves and solitons in a nanoring

    Get PDF
    We apply the hydrodynamic theory of electron liquid to demonstrate that a circularly polarized radiation induces the diamagnetic, helicity-sensitive dc current in a ballistic nanoring. This current is dramatically enhanced in the vicinity of plasmonic resonances. The resulting magnetic moment of the nanoring represents a giant increase of the inverse Faraday effect. With increasing radiation intensity, linear plasmonic excitations evolve into the strongly non-linear plasma shock waves. These excitations produce a series of the well resolved peaks at the THz frequencies. We demonstrate that the plasmonic wave dispersion transforms the shock waves into solitons. The predicted effects should enable multiple applications in a wide frequency range (from the microwave to terahertz band) using optically controlled ultra low loss electric, photonic and magnetic devices.Comment: 13 pages, 12 figure

    Cluster growing process and a sequence of magic numbers

    Get PDF
    We present a new theoretical framework for modelling the cluster growing process. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing paths up to the cluster sizes of more than 100 atoms. We demonstrate that in this way all known global minimum structures of the Lennard-Jonnes (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic numbers sequence for the clusters of noble gases atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence on cluster size of the second derivative of the binding energy per atom calculated for the chain of LJ-clusters based on the icosahedral symmetry with the peaks in the abundance mass spectra experimentally measured for the clusters of noble gases atoms. Our method serves an efficient alternative to the global optimization techniques based on the Monte-Carlo simulations and it can be applied for the solution of a broad variety of problems in which atomic cluster structure is important.Comment: 10 pages, 3 figure

    Numerical and experimental studies of the carbon etching in EUV-induced plasma

    Get PDF
    We have used a combination of numerical modeling and experiments to study carbon etching in the presence of a hydrogen plasma. We model the evolution of a low density EUV-induced plasma during and after the EUV pulse to obtain the energy resolved ion fluxes from the plasma to the surface. By relating the computed ion fluxes to the experimentally observed etching rate at various pressures and ion energies, we show that at low pressure and energy, carbon etching is due to chemical sputtering, while at high pressure and energy a reactive ion etching process is likely to dominate

    Complementarity of Nesting Ornithocomplexes in Urban Faunae (through the example of Melitopol, Southern Ukraine)

    Get PDF
    The results of the study of birds nesting in Melitopol conducted in 2011-2019 are presented. The distribution and correlation of bird species in urban biotopes based on a raster map with squares of 1x1 km is provided. There are 170 bird species registered in the city throughout the year, including 104 nesting species; over the last 50 years their number has increased by 69 species. Nesting ornithocomplex of the areas of the city with multi-storey buildings include 16 species, areas with individual buildings – 23 species, industrial sites - 21 species, green areas - 51 species, reed thickets - 27 species, agricultural landscapes - 24 species, floodplains - 9 species, floodplain meadows - 9 species. Over the last decades, birds of Corvidae family - Garrulus glandarius, Pica pica, Corvus monedula, C. frugilegus, C. cornix, C. corax - have inhabited the city and formed urbanized populations. Of the birds of prey - Falco tinnunculus and Athene noctua. The taxonomic and ecological structure of ornithocomplexes of the city is considered. The basis of ornithocomplexes are widespread species of synthantropes and dendrophylles. Introduced species (Phasianus colchicus) and invasive species (Streptopelia decaocto, Dendrocopos syriacus, D. minor, Phoenicurus ochruros, etc.) also inhabited the city. Representatives of the dendrophylic group predominate in the ecological structure of onitocomplexes of the studied area, which includes 47 species (45.2%), lymphophyllous group is represented by 26 species (25.0%), sclerophyllous – by 14 species (13.5%), campophyllous – by 9 species (8.7%), the limnophyllous-dendrophyllous group is represented by 1 species (0.9%), dendrophyllous-sclerophyllous – by 6 species (5.8%) and limnophyllous-sclerophyllous – by 1 species (0.9%). Complementarity of urban ornithocomplexes is high due to the syntantropic species - dendrophylles and sclerophylles. Keywords: ecological structure, Melitopol, nest biotopes, nesting ornithocomplexes, taxonomic structure, urban landscapes
    corecore