102 research outputs found

    Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings

    Full text link
    We compute the contribution of kinks on cosmic string loops to stochastic background of gravitational waves (SBGW).We find that kinks contribute at the same order as cusps to the SBGW.We discuss the accessibility of the total background due to kinks as well as cusps to current and planned gravitational wave detectors, as well as to the big bang nucleosynthesis (BBN), the cosmic microwave background (CMB), and pulsar timing constraints. As in the case of cusps, we find that current data from interferometric gravitational wave detectors, such as LIGO, are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds.Comment: 24 pages, 3 figure

    Optimisation of Thin Plastic Foil Targets for Production of Laser-Generated Protons in the GeV Range

    Full text link
    In order to realistically simulate the interaction of a femtosecond laser pulse with a nanometre-thick target it is necessary to consider a target preplasma formation due to the nanosecond long amplified-spontaneous-emission pedestal and/or prepulse. The relatively long interaction time dictated that hydrodynamic simulations should be employed to predict the target particles' number density distributions prior the arrival of the main laser pulse. By using the output of the hydrodynamic simulations as input into particle-in-cell simulations, a detailed understanding of the complete laser-foil interaction is achieved. Once the laser pulse interacts with the preplasma it deposits a fraction of its energy on the target, before it is either reflected from the critical density surface or transmitted through an underdense plasma channel. A fraction of hot electrons is ejected from the target leaving the foil in a net positive potential, which in turn results in proton and heavy ion ejection. In this work protons reaching ~25 MeV are predicted for a laser of ~40 TW peak power and ~600 MeV are expected from a ~4 PW laser system.Comment: 17 pages, 21 figure

    On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    Full text link
    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. This method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. Large aspect ratio rectangular capillaries might be used to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.Comment: 16 pages, 7 figures, 1 tabl

    Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications

    Full text link
    One of the most robust methods, demonstrated up to date, of accelerating electron beams by laser-plasma sources is the utilization of plasma channels generated by the capillary discharges. These channels, i.e., plasma columns with a minimum density along the laser pulse propagation axis, may optically guide short laser pulses, thereby increasing the acceleration length, leading to a more efficient electron acceleration. Although the spatial structure of the installation is simple in principle, there may be some important effects caused by the open ends of the capillary, by the supplying channels etc., which require a detailed 3D modeling of the processes taking place in order to get a detailed understanding and improve the operation. However, the discharge plasma, being one of the most crucial components of the laser-plasma accelerator, is not simulated with the accuracy and resolution required to advance this promising technology. In the present work, such simulations are performed using the code MARPLE. First, the process of the capillary filling with a cold hydrogen before the discharge is fired, through the side supply channels is simulated. The main goal of this simulation is to get a spatial distribution of the filling gas in the region near the open ends of the capillary. A realistic geometry is used for this and the next stage simulations, including the insulators, the supplying channels as well as the electrodes. Second, the simulation of the capillary discharge is performed with the goal to obtain a time-dependent spatial distribution of the electron density near the open ends of the capillary as well as inside the capillary. Finally, to evaluate effectiveness of the beam coupling with the channeling plasma wave guide and electron acceleration, modeling of laser-plasma interaction was performed with the code INF&RNOComment: 11 pages, 9 figure

    Plasma Equilibrium inside Various Cross-Section Capillary Discharges

    Full text link
    Plasma properties inside a hydrogen-filled capillary discharge waveguide were modeled with dissipative magnetohydrodynamic simulations to enable analysis of capillaries of circular and square cross-sections implying that square capillaries can be used to guide circularly-symmetric laser beams. When the quasistationary stage of the discharge is reached, the plasma and temperature in the vicinity of the capillary axis has almost the same profile for both the circular and square capillaries. The effect of cross-section on the electron beam focusing properties were studied using the simulation-derived magnetic field map. Particle tracking simulations showed only slight effects on the electron beam symmetry in the horizontal and diagonal directions for square capillary.Comment: 6 pages, 10 figure

    Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV

    Get PDF
    A plasma channel created by the combination of a capillary discharge and inverse Bremsstrahlung laser heating enabled the generation of electron bunches with energy up to 7.8 GeV in a laser-driven plasma accelerator. The capillary discharge created an initial plasma channel and was used to tune the plasma temperature, which optimized laser heating. Although optimized colder initial plasma temperatures reduced the ionization degree, subsequent ionization from the heater pulse created a fully ionized plasma on-axis. The heater pulse duration was chosen to be longer than the hydrodynamic timescale of ≈ 1 ns, such that later temporal slices were more efficiently guided by the channel created by the front of the pulse. Simulations are presented which show that this thermal self-guiding of the heater pulse enabled channel formation over 20 cm. The post-heated channel had lower on-axis density and increased focusing strength compared to relying on the discharge alone, which allowed for guiding of relativistically intense laser pulses with a peak power of 0.85 PW and wakefield acceleration over 15 diffraction lengths. Electrons were injected into the wake in multiple buckets and times, leading to several electron bunches with different peak energies. To create single electron bunches with low energy spread, experiments using localized ionization injection inside a capillary discharge waveguide were performed. A single injected bunch with energy 1.6 GeV, charge 38 pC, divergence 1 mrad, and relative energy spread below 2% full-width half-maximum was produced in a 3.3 cm-long capillary discharge waveguide. This development shows promise for mitigation of energy spread and future high efficiency staged acceleration experiments

    Non-adiabatic cluster expansion after ultrashort laser interaction

    Get PDF
    AbstractWe used X-ray spectroscopy as a diagnostic tool for investigating the properties of laser-cluster interactions at the stage in which non-adiabatic cluster expansion takes place and a quasi-homogeneous plasma is produced. The experiment was carried out with a 10 TW, 65 fs Ti:Sa laser focused on CO2 cluster jets. The effect of different laser-pulse contrast ratios and cluster concentrations was investigated. The X-ray emission associated to the Rydberg transitions allowed us to retrieve, through the density and temperature of the emitting plasma, the time after the beginning of the interaction at which the emission occurred. The comparison of this value with the estimated time for the "homogeneous" plasma formation shows that the degree of adiabaticity depends on both the cluster concentration and the pulse contrast. Interferometric measurements support the X-ray data concerning the plasma electron density

    RISK ASSESSMENT MODELS OF PUBLIC-PRIVATE PARTNERSHIP IN THE ROAD SECTOR

    No full text
    This article studies the main potential models of public-private partnership; it gives evaluation of risks for these models, considering their distribution between members of partnership. It offers the mechanism of making an optimal choice of a public-private partnership model for projects of transport system development

    QUANTITATIVE ASSESSMENT OF THE INVESTMENT PROJECT CREATION OR RENOVATION TRANSPORT INFRASTRUCTURE

    No full text
    Summary. The paper proposes a method of determining the quantitative assessment of the investment project of reconstruction of the facility or transport infrastructure, taking into account the impact on both the vehicle and non-transport effect. Among the most significant socio- economic benefits of modernization and development of the road network of the federal and regional significance include: improving and improving and improving the social conditions of the population , increased economic activity , reduction of transport costs in the price of goods and services, reducing the negative impact of transport and road complex environment. Modelling of toxic pollutant emissions for the transport stream to optimize road to reconstruct existing infrastructure by minimizing environmental damage. Kinematic model of traffic flow, which allows to express the parameters of toxic pollution through directly observable quantities, based on the concept of cellular automata , augmented parameters governing the organization of traffic. Necessary to determine the parameters of motion so that the average flow rate was in the optimal range (60 - 90) km / h. Multicriteria optimization problem so requires collecting and analyzing vast and diverse information of the following types: topographic, demographic, social, economic, environmental, transport. As follows from the calculations, the doses of all types of toxic effects, per unit length of the road, increase significantly in the fall an average speed of traffic flow. Thus, modeling of toxic emissions transport stream allows one hand to optimize the traffic in the existing infrastructure and, on the other hand, to optimize the construction and reconstruction of infrastructure

    Biomechanical operating principles of a novel prosthesis for restoring the function of joints

    No full text
    • …
    corecore