43 research outputs found

    Variations of atmospheric methane supply from the Sea of Okhotsk unduced by the seasonal in cover

    Get PDF
    Measurements of dissolved methane in the surface waters of the western Sea of Okhotsk are evaluated in terms of methane exchange rates and are used to assess the magnitude of seasonal variations of methane fluxes from the ocean to the atmosphere in this area. Methane concentrations northeast of Sakhalin were observed to range from 385 nmol L−1 under the ice cover in winter to 6 nmol L−1 in the icefree midsummer season. The magnitude of supersaturations indicates that this part of the Okhotsk Sea is a significant source for atmospheric methane. From the seasonal variation of the supersaturations in the surface waters it is evident that the air-sea exchange is interrupted during the winter and methane from sedimentary sources accumulates under the ice cover. According to our measurements an initial early summer methane pulse into the atmosphere of the order of 560 mol km−2 d−1 can be expected when the supersaturated surface waters are exposed by the retreating ice. The methane flux in July is approximately 150 mol km−2 d−1 which is of the order of the average annual flux in the survey area. The magnitude of the seasonal CH4 flux variation northeast of Sakhalin corresponds to an amount of 7.3 × 105 g km−2 whereby 74% or 5.4 × 105 g km−2 are supplied to the atmosphere between April and July. For the whole Sea of Okhotsk the annual methane flux is roughly 0.13 × 1012 g (terragrams), based on the assumption that 15% of the entire area emit methane. Variations of long-term data of atmospheric methane which are recorded at the same latitude adjacent to areas with seasonal ice cover show a regional methane pulse between April and July. The large-scale level of atmospheric methane in the northern hemisphere undergoes an amplitudinal variation of about 25 parts per billion by volume (ppbv) which translates into approximately 36 Tg. Thus the estimated 0.6 Tg of ice-induced methane dynamics in northern latitudes can hardly explain this seasonal signal. However, the effects of seasonal ice cover on pulsed release of methane appear strong enough to contribute, in concert with other seasonal sources, to characteristic short-term wobbles in the atmospheric methane budget which are observed between 50°N and 60°N

    Influence of inert gases of argon and kripton on oxygen absorption

    No full text
    Consumption of oxygen by an organism of a rat at long maximum stay in the closed space decreases twice in oxygen-nitric (20-80%) environment. In oxygen-argon (20-80%) environment oxygen consumption decreases in 3 times, and in oxygen-kripton (20-80%) decrease environment in 5 times

    Biological, physical and chemical characteristics of water and sediment samples from the Volga River delta, northern Caspian

    No full text
    Based on the data of synchronous observations of hydrophysical and biogeochemical parameters in the near-mouth and shallow-water areas of the northern Caspian in 2000-2001, the scale of spatiotemporal variability in the following characteristics of the water-bottom system was estimated (1) flow velocity and direction within vortex structures formed by the combined effect of wind, discharge current, and the presence of higher aquatic plants; (2) dependence of the spatial distribution of the content and composition of suspended particulate matter on the hydrodynamic regime of waters and development of phytoplankton; (3) variations in the grain-size, petrographic, mineralogical, and chemical compositions of the upper layer of bottom sediments at several sites in the northern Caspian related to the particular local combination of dominant natural processes; and (4) limits of variability in the group composition of humus compounds in bottom sediments. The acquired data are helpful in estimating the geochemical consequences of a sea level rise and during the planning of preventive environmental protection measures in view of future oil and gas recovery in this region
    corecore