792 research outputs found

    MEDAL: An AI-Driven Data Fabric Concept for Elastic Cloud-to-Edge Intelligence

    Get PDF
    Current Cloud solutions for Edge Computing are inefficient for data-centric applications, as they focus on the IaaS/PaaS level and they miss the data modeling and operations perspective. Consequently, Edge Computing opportunities are lost due to cumbersome and data assets-agnostic processes for end-to-end deployment over the Cloud-to-Edge continuum. In this paper, we introduce MEDAL, an intelligent Cloud-to-Edge Data Fabric to support Data Operations (DataOps)across the continuum and to automate management and orchestration operations over a combined view of the data and the resource layer. MEDAL facilitates building and managing data workflows on top of existing flexible and composable data services, seamlessly exploiting and federating IaaS/PaaS/SaaS resources across different Cloud and Edge environments. We describe the MEDAL Platform as a usable tool for Data Scientists and Engineers, encompassing our concept and we illustrate its application though a connected cars use case

    Differences in approach run kinematics: successful vs. unsuccessful jumps in the pole vault

    Get PDF
    This study investigated biomechanical differences between successful and unsuccessful jumps during a pole vault competition. Two hundred and seven pairs of successful and unsuccessful jumps at the same height were analysed. Participants included male and female athletes of three different age groups with bar height clearances ranging from 2.81 to 5.91 m. Run-up parameters were collected using an Optojump Next system and a Stalker Pro II radar gun. A 2D kinematical analysis was conducted to obtain selected parameters of the take-off. Only trivial and small differences were found between successful and unsuccessful jumps. The speed at last touchdown showed a significant small difference between successful and unsuccessful jumps, as the greater speed at takeoff (+0.15 m/s) was observed at successful jumps compared to unsuccessful jumps. Furthermore, female athletes showed a significant small difference in horizontal hand–foot distance between successful jumps and unsuccessful jumps (+0.05 m and +0.06 m at pole plant and take-off, respectively). The results suggest that pole vaulters should produce a fast run-up and avoid a decrease in speed before take-off. Small adjustments in the take-off posture might increase the transfer of energy from the athlete to the pole and thus an improvement concerning the height of bar clearance

    Principles for integrating reactive species into in vivo biological processes:examples from exercise physiology

    Get PDF
    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question

    SISAR imaging - radio holography signal reconstruction based on receiver-transmitter motion

    Get PDF
    Radio Holography Signal (RHS) reconstruction is the primary method used for Shadow Inverse Synthetic Aperture Radar (SISAR) imaging algorithm application. In this paper an alternative way for RHS signal reconstruction is introduced based on the motion of receiver and/or transmitter ends. In particular, a novel model for time domain RHS signal is derived assuming a moving-ends (ME) scenario followed by the RHS reconstruction method. The model and reconstruction method area assessed through simulated data

    Localization length in Dorokhov's microscopic model of multichannel wires

    Full text link
    We derive exact quantum expressions for the localization length LcL_c for weak disorder in two- and three chain tight-binding systems coupled by random nearest-neighbour interchain hopping terms and including random energies of the atomic sites. These quasi-1D systems are the two- and three channel versions of Dorokhov's model of localization in a wire of NN periodically arranged atomic chains. We find that Lc1=N.ξ1L^{-1}_c=N.\xi^{-1} for the considered systems with N=(1,2,3)N=(1,2,3), where ξ\xi is Thouless' quantum expression for the inverse localization length in a single 1D Anderson chain, for weak disorder. The inverse localization length is defined from the exponential decay of the two-probe Landauer conductance, which is determined from an earlier transfer matrix solution of the Schr\"{o}dinger equation in a Bloch basis. Our exact expressions above differ qualitatively from Dorokhov's localization length identified as the length scaling parameter in his scaling description of the distribution of the participation ratio. For N=3 we also discuss the case where the coupled chains are arranged on a strip rather than periodically on a tube. From the transfer matrix treatment we also obtain reflection coefficients matrices which allow us to find mean free paths and to discuss their relation to localization lengths in the two- and three channel systems

    Conductance scaling at the band center of wide wires with pure non--diagonal disorder

    Full text link
    Kubo formula is used to get the scaling behavior of the static conductance distribution of wide wires showing pure non-diagonal disorder. Following recent works that point to unusual phenomena in some circumstances, scaling at the band center of wires of odd widths has been numerically investigated. While the conductance mean shows a decrease that is only proportional to the inverse square root of the wire length, the median of the distribution exponentially decreases as a function of the square root of the length. Actually, the whole distribution decays as the inverse square root of the length except close to G=0 where the distribution accumulates the weight lost at larger conductances. It accurately follows the theoretical prediction once the free parameter is correctly fitted. Moreover, when the number of channels equals the wire length but contacts are kept finite, the conductance distribution is still described by the previous model. It is shown that the common origin of this behavior is a simple Gaussian statistics followed by the logarithm of the E=0 wavefunction weight ratio of a system showing chiral symmetry. A finite value of the two-dimensional conductance mean is obtained in the infinite size limit. Both conductance and the wavefunction statistics distributions are given in this limit. This results are consistent with the 'critical' character of the E=0 wavefunction predicted in the literature.Comment: 10 pages, 9 figures, RevTeX macr
    corecore