research

Localization length in Dorokhov's microscopic model of multichannel wires

Abstract

We derive exact quantum expressions for the localization length LcL_c for weak disorder in two- and three chain tight-binding systems coupled by random nearest-neighbour interchain hopping terms and including random energies of the atomic sites. These quasi-1D systems are the two- and three channel versions of Dorokhov's model of localization in a wire of NN periodically arranged atomic chains. We find that Lc1=N.ξ1L^{-1}_c=N.\xi^{-1} for the considered systems with N=(1,2,3)N=(1,2,3), where ξ\xi is Thouless' quantum expression for the inverse localization length in a single 1D Anderson chain, for weak disorder. The inverse localization length is defined from the exponential decay of the two-probe Landauer conductance, which is determined from an earlier transfer matrix solution of the Schr\"{o}dinger equation in a Bloch basis. Our exact expressions above differ qualitatively from Dorokhov's localization length identified as the length scaling parameter in his scaling description of the distribution of the participation ratio. For N=3 we also discuss the case where the coupled chains are arranged on a strip rather than periodically on a tube. From the transfer matrix treatment we also obtain reflection coefficients matrices which allow us to find mean free paths and to discuss their relation to localization lengths in the two- and three channel systems

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019