305 research outputs found
Pore topology analysis in porous molecular systems
Porous molecular materials are constructed from molecules that assemble in the solid-state such that there are cavities or an interconnected pore network. It is challenging to control the assembly of these systems, as the interactions between the molecules are generally weak, and subtle changes in the molecular structure can lead to vastly different intermolecular interactions and subsequently different crystal packing arrangements. Similarly, the use of different solvents for crystallization, or the introduction of solvent vapour, can result in different polymorphs and pore networks being formed. It is difficult to uniquely describe the pore networks formed, and thus we analyse 1033 crystal structures of porous molecular systems to determine the underlying topology of their void spaces and potential guest diffusion networks. Material-Agnostic topology definitions are applied. We use the underlying topological nets to examine whether it is possible to apply isoreticular design principles to porous molecular materials. Overall, our automatic analysis of a large dataset gives a general insight into the relationships between molecular topologies and the topological nets of their pore network. We show that while porous molecular systems tend to pack similarly to non-porous molecules, the topologies of their pore distributions resemble those of more prominent porous materials, such as metal-organic frameworks and covalent organic frameworks
Absence of a structural glass phase in a monoatomic model liquid predicted to undergo an ideal glass transition
We study numerically a monodisperse model of interacting classical particles
predicted to exhibit a static liquid-glass transition. Using a dynamical Monte
Carlo method we show that the model does not freeze into a glassy phase at low
temperatures. Instead, depending on the choice of the hard-core radius for the
particles the system either collapses trivially or a polycrystalline hexagonal
structure emerges.Comment: 4 pages, 4 figures, minor changes in introduction and conclusions,
additional reference
Into the Unknown: How Computation Can Help Explore Uncharted Material Space
Novel functional materials are urgently needed to help combat the major global challenges facing humanity, such as climate change and resource scarcity. Yet, the traditional experimental materials discovery process is slow and the material space at our disposal is too vast to effectively explore using intuition-guided experimentation alone. Most experimental materials discovery programs necessarily focus on exploring the local space of known materials, so we are not fully exploiting the enormous potential material space, where more novel materials with unique properties may exist. Computation, facilitated by improvements in open-source software and databases, as well as computer hardware has the potential to significantly accelerate the rational development of materials, but all too often is only used to postrationalize experimental observations. Thus, the true predictive power of computation, where theory leads experimentation, is not fully utilized. Here, we discuss the challenges to successful implementation of computation-driven materials discovery workflows, and then focus on the progress of the field, with a particular emphasis on the challenges to reaching novel materials
Field-tuned order by disorder in frustrated Ising magnets with antiferromagnetic interactions
We demonstrate the appearance of thermal order by disorder in Ising pyrochlores with staggered antiferromagnetic order frustrated by an applied magnetic field. We use a mean-field cluster variational method, a low-temperature expansion, and Monte Carlo simulations to characterize the order-by-disorder transition. By direct evaluation of the density of states, we quantitatively show how a symmetry-broken state is selected by thermal excitations. We discuss the relevance of our results to experiments in 2D and 3D samples and evaluate how anomalous finite-size effects could be exploited to detect this phenomenon experimentally in two-dimensional artificial systems, or in antiferromagnetic all-in-all-out pyrochlores like Nd2Hf2O7 or Nd2Zr2O7, for the first time.Publisher PDFPeer reviewe
2-Phenyl-4H-3,1-benzoxazin-4-one
The title molecule, C14H9NO2, is nearly planar with a dihedral angle of 3.72 (4)° beteewn the plane of the phenyl ring and the 3,1-benzoxazin-4-one fragment. The molecules are arranged into stacks parallel to the b axis via π–π stacking interactions [centroid-centroid distance = 4.2789 (11) Å] and the crystal packing is additionally stabilized by weak intermolecular C—H⋯O interactions
Mode-coupling theory predictions for a limited valency attractive square-well model
Recently we have studied, using numerical simulations, a limited valency
model, i.e. an attractive square well model with a constraint on the maximum
number of bonded neighbors. Studying a large region of temperatures and
packing fractions , we have estimated the location of the liquid-gas
phase separation spinodal and the loci of dynamic arrest, where the system is
trapped in a disordered non-ergodic state. Two distinct arrest lines for the
system are present in the system: a {\it (repulsive) glass} line at high
packing fraction, and a {\it gel} line at low and . The former is
essentially vertical (-controlled), while the latter is rather horizontal
(-controlled) in the plane. We here complement the molecular
dynamics results with mode coupling theory calculations, using the numerical
structure factors as input. We find that the theory predicts a repulsive glass
line -- in satisfactory agreement with the simulation results -- and an
attractive glass line which appears to be unrelated to the gel line.Comment: 12 pages, 6 figures. To appear in J. Phys. Condens. Matter, special
issue: "Topics in Application of Scattering Methods for Investigation of
Structure and Dynamics of Soft Condensed Matter", Fiesole, November 200
Left ventricular assist device and transcatheter edge-to-edge mitral valve repair in advanced heart failure: allies or enemies?
The implantation of left ventricular assist devices (LVADs) has been increasing, with good long-term results, in parallel with a growing population with advanced heart failure (HF). However, in some European countries, LVADs are still underused, with one of the main issues being the patient's late referral. On the contrary, the use of transcatheter edge-to-edge mitral valve repair (TEER) has exponentially increased over the past decade, expanding its potential use even in patients on the heart transplantation waiting list. Even though the study populations of the main trials that investigated the prognostic impact of LVAD and TEER are different, in clinical practice a clear distinction might not be so clear. Therefore, patients with refractory HF symptoms and significant mitral regurgitation should be thoroughly evaluated through a multidisciplinary Heart Team meeting with both an advanced HF specialist and interventional cardiologist, to avoid futile procedures and to define the optimal timing for advanced HF therapies, when they are indicated. We analyzed the main available studies and registries on both TEERs and LVADs and we compared their populations and outcomes, to provide the current evidence on the use of LVAD and TEER in the HF population, especially in the light of the recently released 5-year follow-up results, giving some insights on the Italian situation, and finally to stress the importance of a solid HF network between hospitals, aiming for advanced HF patients' timely referral for LVAD or heart transplants
Recommended from our members
Pore topology analysis in porous molecular systems
Porous molecular materials are constructed from molecules that assemble in the solid-state such that there are cavities or an interconnected pore network. It is challenging to control the assembly of these systems, as the interactions between the molecules are generally weak, and subtle changes in the molecular structure can lead to vastly different intermolecular interactions and subsequently different crystal packing arrangements. Similarly, the use of different solvents for crystallization, or the introduction of solvent vapour, can result in different polymorphs and pore networks being formed. It is difficult to uniquely describe the pore networks formed, and thus we analyse 1033 crystal structures of porous molecular systems to determine the underlying topology of their void spaces and potential guest diffusion networks. Material-agnostic topology definitions are applied. We use the underlying topological nets to examine whether it is possible to apply isoreticular design principles to porous molecular materials. Overall, our automatic analysis of a large dataset gives a general insight into the relationships between molecular topologies and the topological nets of their pore network. We show that while porous molecular systems tend to pack similarly to non-porous molecules, the topologies of their pore distributions resemble those of more prominent porous materials, such as metal–organic frameworks and covalent organic frameworks
Order in glassy systems
A directly measurable correlation length may be defined for systems having a
two-step relaxation, based on the geometric properties of density profile that
remains after averaging out the fast motion. We argue that the length diverges
if and when the slow timescale diverges, whatever the microscopic mechanism at
the origin of the slowing down. Measuring the length amounts to determining
explicitly the complexity from the observed particle configurations. One may
compute in the same way the Renyi complexities K_q, their relative behavior for
different q characterizes the mechanism underlying the transition. In
particular, the 'Random First Order' scenario predicts that in the glass phase
K_q=0 for q>x, and K_q>0 for q<x, with x the Parisi parameter. The hypothesis
of a nonequilibrium effective temperature may also be directly tested directly
from configurations.Comment: Typos corrected, clarifications adde
- …