514 research outputs found

    Low-energy electronic properties of clean CaRuO3_3: elusive Landau quasiparticles

    Full text link
    We have prepared high-quality epitaxial thin films of CaRuO3_3 with residual resistivity ratios up to 55. Shubnikov-de Haas oscillations in the magnetoresistance and a T2T^2 temperature dependence in the electrical resistivity only below 1.5 K, whose coefficient is substantially suppressed in large magnetic fields, establish CaRuO3_3 as a Fermi liquid (FL) with anomalously low coherence scale. Non-Fermi liquid (NFL) T3/2T^{3/2} dependence is found between 2 and 25 K. The high sample quality allows access to the intrinsic electronic properties via THz spectroscopy. For frequencies below 0.6 THz, the conductivity is Drude-like and can be modeled by FL concepts, while for higher frequencies non-Drude behavior, inconsistent with FL predictions, is found. This establishes CaRuO3_3 as a prime example of optical NFL behavior in the THz range.Comment: 12 pages, 21 figures including supplemental materia

    Do biometric parameters improve the quality of optic nerve head measurements with spectral domain optical coherence tomography?

    Get PDF
    Funding Information: A part of the study data have been presented as a free paper oral presentation ‘ Clinical quality assessment of optic nerve head measurements with spectral domain optical coherence tomography—preliminary results’ in 118. Congress of the DOG (German Society of Ophthalmology) 2020. Publisher Copyright: © 2022, The Author(s).Background: Spectral domain optical coherence tomography (SD-OCT) is a widely applied non-invasive technique for evaluating optic nerve head parameters. The aim of this study was to evaluate the impact of biometric parameters such as the spherical equivalent (SE) and the anterior corneal curvature (ACC) on the peripapillary retinal nerve fiber layer (pRNFL), Bruch’s membrane opening (BMO), and the minimum rim width (MRW) measurements performed by spectral domain optical coherence tomography (SD-OCT) in glaucomatous and healthy eyes. Methods: In this cross-sectional, case–control prospective pilot study, the glaucoma group consisted of 50 patients with previously diagnosed and treated glaucoma and one healthy group of 50 subjects. Two consecutive examinations of pRNFL, BMO, and MRW with SD-OCT for every patient were performed without ACC and objective refraction (imaging 1) and with them (imaging 2). Results: The interclass correlation coefficient (ICC) reflected high agreement between imaging 1 and imaging 2 in both groups. The ICC in the glaucoma and healthy groups for pRNFL (0.99 vs. 0.98), BMO (0.95 vs. 0.97), and MRW (1.0 vs. 1.0) was comparable. Conclusions: Our preliminary data from a small number of eyes showed that the measurements of pRNFL, MRW, and BMO reflected high agreement between both imaging techniques with ACC and objective refraction and without these parameters in subjects with a refractive error up to ± 6.0 diopters. Further studies with participants with higher refractive error are necessary to evaluate the impact of biometric parameters such as SE and ACC on measurements with SD-OCT.publishersversionPeer reviewe

    Exact field ionization rates in the barrier suppression-regime from numerical TDSE calculations

    Full text link
    Numerically determined ionization rates for the field ionization of atomic hydrogen in strong and short laser pulses are presented. The laser pulse intensity reaches the so-called "barrier suppression ionization" regime where field ionization occurs within a few half laser cycles. Comparison of our numerical results with analytical theories frequently used shows poor agreement. An empirical formula for the "barrier suppression ionization"-rate is presented. This rate reproduces very well the course of the numerically determined ground state populations for laser pulses with different length, shape, amplitude, and frequency. Number(s): 32.80.RmComment: Enlarged and newly revised version, 22 pages (REVTeX) + 8 figures in ps-format, submitted for publication to Physical Review A, WWW: http://www.physik.tu-darmstadt.de/tqe

    Human Milk Protein Production in Xenografts of Genetically Engineered Bovine Mammary Epithelial Stem Cells

    Get PDF
    BACKGROUND: In the bovine species milk production is well known to correlate with mammary tissue mass. However, most advances in optimizing milk production relied on improvements of breeding and husbandry practices. A better understanding of the cells that generate bovine mammary tissue could facilitate important advances in milk production and have global economic impact. With this possibility in mind, we show that a mammary stem cell population can be functionally identified and isolated from the bovine mammary gland. We also demonstrate that this stem cell population may be a promising target for manipulating the composition of cow's milk using gene transfer. METHODS AND FINDINGS: We show that the in vitro colony-forming cell assay for detecting normal primitive bipotent and lineage-restricted human mammary clonogenic progenitors are applicable to bovine mammary cells. Similarly, the ability of normal human mammary stem cells to regenerate functional bilayered structures in collagen gels placed under the kidney capsule of immunodeficient mice is shared by a subset of bovine mammary cells that lack aldehyde dehydrogenase activity. We also find that this activity is a distinguishing feature of luminal-restricted bovine progenitors. The regenerated structures recapitulate the organization of bovine mammary tissue, and milk could be readily detected in these structures when they were assessed by immunohistochemical analysis. Transplantation of the bovine cells transduced with a lentivirus encoding human β-CASEIN led to expression of the transgene and secretion of the product by their progeny regenerated in vivo. CONCLUSIONS: These findings point to a common developmental hierarchy shared by human and bovine mammary glands, providing strong evidence of common mechanisms regulating the maintenance and differentiation of mammary stem cells from both species. These results highlight the potential of novel engineering and transplant strategies for a variety of commercial applications including the production of modified milk components for human consumption

    Asymptotic Scaling and Infrared Behavior of the Gluon Propagator

    Get PDF
    The Landau gauge gluon propagator for the pure gauge theory is evaluated on a 32^3x64 lattice with a physical volume of (3.35^3x6.7)fm^4. Comparison with two smaller lattices at different lattice spacings allows an assessment of finite volume and finite lattice spacing errors. Cuts on the data are imposed to minimize these errors. Scaling of the gluon propagator is verified between beta=6.0 and beta=6.2. The tensor structure is evaluated and found to be in good agreement with the Landau gauge form, except at very small momentum values, where some small finite volume errors persist. A number of functional forms for the momentum dependence of the propagator are investigated. The form D(q^2)=D_ir+D_uv, where D_ir(q^2) ~ (q^2+M^2)^-\eta and D_uv is an infrared regulated one-loop asymptotic form, is found to provide an adequate description of the data over the entire momentum region studied - thereby bridging the gap between the infrared confinement region and the ultraviolet asymptotic region. The best estimate for the exponent \eta is 3.2(+0.1/-0.2)(+0.2/-0.3), where the first set of errors represents the uncertainty associated with varying the fitting range, while the second set of errors reflects the variation arising from different choices of infrared regulator in D_uv. Fixing the form of D_uv, we find that the mass parameter M is (1020+/-100)MeV.Comment: 37 pages, RevTeX, 16 postscript figures, 7 gif figures. Revised version accepted for publication in Phys. Rev. D. Model functions and discussion of asymptotic behaviour modified; all model fits have been redone. This paper, including postscript version of all figures, can be found at http://www.physics.adelaide.edu.au/~jskuller/papers

    The Gluon Propagator without lattice Gribov copies

    Get PDF
    We study the gluon propagator in quenched lattice QCD using the Laplacian gauge which is free of lattice Gribov copies. We compare our results with those obtained in the Landau gauge on the lattice, as well as with various approximate solutions of the Dyson Schwinger equations. We find a finite value (445MeV)2\sim (445 \rm{MeV})^{-2} for the renormalized zero-momentum propagator (taking our renormalization point at 1.943 GeV), and a pole mass 640±140\sim 640 \pm 140 MeV.Comment: Discussion of the renormalized gluon propagator and of the Laplacian gauge fixing procedure extended. Version to appear in Phys. Rev. D. 15 pages, 8 figure

    Infrared behavior of the gluon propagator in lattice Landau gauge: the three-dimensional case

    Full text link
    We evaluate numerically the three-momentum-space gluon propagator in the lattice Landau gauge, for three-dimensional pure-SU(2) lattice gauge theory with periodic boundary conditions. Simulations are done for nine different values of the coupling β\beta, from β=0\beta = 0 (strong coupling) to β=6.0\beta = 6.0 (in the scaling region), and for lattice sizes up to V=643V = 64^3. In the limit of large lattice volume we observe, in all cases, a gluon propagator decreasing for momenta smaller than a constant value pdecp_{dec}. From our data we estimate pdec350p_{dec} \approx 350 MeV. The result of a gluon propagator decreasing in the infrared limit has a straightforward interpretation as resulting from the proximity of the so-called first Gribov horizon in the infrared directions.Comment: 14 pages, BI-TP 99/03 preprint, correction in the Acknowledgments section. To appear in Phys.Rev.

    SU(2) Landau gluon propagator on a 140^3 lattice

    Full text link
    We present a numerical study of the gluon propagator in lattice Landau gauge for three-dimensional pure-SU(2) lattice gauge theory at couplings beta = 4.2, 5.0, 6.0 and for lattice volumes V = 40^3, 80^3, 140^3. In the limit of large V we observe a decreasing gluon propagator for momenta smaller than p_{dec} = 350^{+ 100}_{- 50} MeV. Data are well fitted by Gribov-like formulae and seem to indicate an infra-red critical exponent kappa slightly above 0.6, in agreement with recent analytic results.Comment: 5 pages with 2 figures and 3 tables; added a paragraph on discretization effect

    X-ray photoemission study of NiS_{2-x}Se_x (x = 0.0 - 1.2)

    Full text link
    Electronic structure of NiS_{2-x}Se_x system has been investigated for various compositions (x) using x-ray photoemission spectroscopy. An analysis of the core level as well as the valence band spectra of NiS_2 in conjunction with many-body cluster calculations provides a quantitative description of the electronic structure of this compound. With increasing Se content, the on-site Coulomb correlation strength (U) does not change, while the band width W of the system increases, driving the system from a covalent insulating state to a pd-metallic state.Comment: 19 pages, 6 figures, To appear in Phys. Rev. B, 200

    Variational Worldline Approximation for the Relativistic Two-Body Bound State in a Scalar Model

    Full text link
    We use the worldline representation of field theory together with a variational approximation to determine the lowest bound state in the scalar Wick-Cutkosky model where two equal-mass constituents interact via the exchange of mesons. Self-energy and vertex corrections are included approximately in a consistent way as well as crossed diagrams. Only vacuum-polarization effects of the heavy particles are neglected. In a path integral description of an appropriate current-current correlator an effective, retarded action is obtained by integrating out the meson field. As in the polaron problem we employ a quadratic trial action with variational functions to describe retardation and binding effects through multiple meson exchange.The variational equations for these functions are derived, discussed qualitatively and solved numerically. We compare our results with the ones from traditional approaches based on the Bethe-Salpeter equation and find an enhanced binding contrary to some claims in the literature. For weak coupling this is worked out analytically and compared with results from effective field theories. However, the well-known instability of the model, which usually is ignored, now appears at smaller coupling constants than in the one-body case and even when self-energy and vertex corrections are turned off. This induced instability is investigated analytically and the width of the bound state above the critical coupling is estimated.Comment: 62 pages, 7 figures, FBS style, published versio
    corecore