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Abstract

We study the gluon propagator on the lattice using the Laplacian gauge which
is free of lattice Gribov copies. We compare our results with those obtained in
the Landau gauge on the lattice, as well as with various approximate solutions
of the Dyson Schwinger equations. We find a finite value ∼ (250MeV)−2 for the
zero-momentum propagator, and a pole mass ∼ 640 ± 110 MeV.

1. Introduction

Over the last twenty years, widely different conjectures have been proposed for the

infrared behaviour of the gluon propagator. Although it is a gauge dependent quantity,

it can be discussed in a given gauge. Even within the same gauge, the proposals for

the infrared dependence differ drastically [1]. We mainly summarize here the results

that are given in the literature within the Landau gauge, since that gauge is widely

used in studies of Dyson Schwinger equations (DSE) as well as in lattice QCD. Early

predictions were obtained by solving approximately the DSE. Mandelstam [2] obtained

a solution of a set of truncated DSE equations with an infrared behaviour of the form

(q2)−2 for the gluon propagator. Such an infrared enhancement was shown, if obtained

in any gauge, to lead to an area law for the Wilson loop [3] and thus to be sufficient for

confinement. Infrared enhancement was assumed in various phenomenological studies [4]

and corroborated by later studies of DSE with refined approximations [5]. A different

perspective was taken by Gribov [6], who showed that avoiding gauge copies one would

obtain a gluon propagator which vanishes in the infrared in the Landau and Coulomb

gauges, of the form

D(q2) ∼ q2

q4 + m4
. (1.1)

An infrared suppressed behaviour was advocated by Stingl [7], and recently by oth-

ers [8], as a possible solution to DSE. Following a procedure similar to that by Gribov,
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Zwanziger [9] gave arguments to show that, on the lattice, for any finite spacing in the

limit of infinite volume, D(q2 = 0) = 0.

We will consider in this work the results obtained by Cornwall [10] using a resumma-

tion of Feynman graphs which leads to gauge-invariant amplitudes. The gluon propagator

was obtained as a solution to this special set of DSE where, in addition to fulfilling the

Ward identities, one allows a dynamical mass generation. This formulation has the at-

tractive feature that the gluon mass vanishes in the ultraviolet as required perturbatively.

It also predicts a finite value of D(0) ≡ D(q2 = 0) consistent with our data.

In contrast to all the approaches described above, lattice QCD provides a framework

for the calculation of the gluon propagator starting directly from the QCD Lagrangian

and can thus yield a conclusive result. Attempts to calculate the gluon propagator started

more than ten years ago [11, 12] on rather small lattices. These early results could be

interpreted in terms of a massive scalar propagator, but confirmed the expectation that a

Lehmann-Källen representation is not applicable: positivity of the transfer matrix is lost

after the non-local gauge fixing. Results on larger lattices were accounted for by assuming

a positive anomalous dimension [13]. Recently, a detailed study of the gluon propagator

on very large lattices [14] has been performed, which makes an impressive effort towards

bringing under control errors due to the finite lattice spacing and to the finite lattice

volume. However, up to now, all lattice studies have used a similar implementation of

the Landau gauge on the lattice. Gauge-fixing is accomplished by using a local iterative

procedure which identifies local stationarity, but in general fails to determine the global

extremum. Which local extremum (“lattice Gribov copy”) is selected depends on the

starting condition. These lattice Gribov copies cannot be eliminated. In this situation,

their effect has repeatedly been claimed to be small [15]. As discussed in Section 3,

we are not convinced by such claims. Lattice Gribov copies cast a long shadow on the

results obtained so far.

In this work we address the problem of Gribov copies. We use a different gauge

condition, which produces a smooth gauge field like the Landau gauge, but which specifies

the gauge uniquely: no ambiguity arises due the lattice gauge fixing procedure. This is

accomplished by using the Laplacian gauge [16]. The motivation and implementation of

this gauge are given in section 3.

We calculate the gluon propagator in quenched QCD on lattices of sizes 84, 164 and

163×32 at β = 5.8 and 6.0, in an attempt to study its zero-temperature behaviour. Our

procedure can be extended straightforwardly to finite temperature where the infrared

behaviour of the propagator yields the chromo-electric and chromo-magnetic screening

masses. The results that we obtain, within the Laplacian gauge, show the same ultravi-

olet behaviour as in Landau gauge. However, there are significant modifications in the

infrared. In particular we find that D(0) is finite, obeys scaling, and becomes volume

independent for large enough volumes. It should not however be used as a definition of

the gluon mass, since the zero momentum limit of the propagator is gauge dependent.

D(0) is simply a measure of the correlation length of the gauge-fixed field Aµ in the

Laplacian gauge. A quantity which instead can be shown to be gauge independent to

all orders in perturbation theory is the pole mass of the transverse part D(q2) of the
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propagator [17]. To determine this pole if it exists at all, an extrapolation to negative

q2 is necessary. We compare the inverse propagator D−1(q2) in the Laplacian and the

Landau gauges: it turns out that the Laplacian gauge allows for a much more reliable

extrapolation. Using a variety of extrapolation ansätze, in particular a fit to Cornwall’s

model [10] which describes the momentum dependence of our results rather well, we find

a robust pole at a mass of ∼ 640(110) MeV.

Section II introduces our notation; Section III motivates and describes our choice of

the Laplacian gauge; Section IV presents our results. They are summarized in Section

V.

2. Definition of the gluon propagator

The gluon propagator in the continuum is given by

Dab
µν(q) = −i

∫
d4x〈0|T [Aa

µ(x)Ab
ν(0)]|0〉eiq.x (2.2)

This tensor can be decomposed into a transverse and a longitudinal part:

Dab
µν(q) =

(
δµν − qµqν

q2

)
δab D(q2) +

qµqν

q2
δab F (q2)

q2
(2.3)

For a covariant gauge F (q2) reduces to a constant and corresponds to the gauge fixing

parameter ξ which in the Landau gauge is zero. Since we want to make a comparison

with the recent results [14] obtained in the Landau gauge, we study the transverse scalar

function D(q2) which can be extracted from Dab
µν(q):

D(q2) =
1

3

{∑
µ

1

8

∑
a

Daa
µµ(q)

}
− 1

3

F (q2)

q2
. (2.4)

F (q2) is determined by projecting the longitudinal part of Daa
µν(q) using the symmetric

tensor qµqν .

On the lattice the dimensionless gluon field can be defined by

Aµ(x + µ̂/2) =
1

2ig0

{[
Uµ(x)− U †

µ(x)
]
− 1

3
Tr

[
Uµ(x)− U †

µ(x)
]}

+O(a3) (2.5)

where a is the lattice spacing. One may consider different definitions for the gluon field

Aµ, accurate to higher order in a. It has been found [18] that these different definitions

give rise to modifications that can be absorbed in the multiplicative field renormalization

constant.

The gluon propagator in momentum space is constructed by taking the discrete Fourier

transform of Aµ for each colour component

Aa
µ(q) =

∑
x

e−iq.(x+µ̂/2)Aa
µ(x + µ̂/2) (2.6)

where the discrete momentum q = (qµ, µ = 1, .., 4) takes values

qµ =
2π

aLµ
nµ, nµ = −(

1

2
Lµ − 1), ..., (

1

2
Lµ) (2.7)
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and the momentum-space gluon propagator Dab
µν(q) is defined by

V δ(q − q′)Dab
µν(q) = 〈Aa

µ(q)A
b
ν(−q′)〉 . (2.8)

with V the lattice volume. In the ultraviolet the gluon propagator is expected to behave

like 1/q2. Since on the lattice the free massless propagator behaves as

D(q) =
1∑

µ

(
2
a

sin qµa
2

)2 (2.9)

to reduce errors due to the finite lattice spacing we take as our momentum variable the

usual

q̂µ =
2

a
sin

qµa

2
(2.10)

3. Gauge fixing procedure

3.1 Motivation

The gluon propagator is normally considered in Landau gauge, ∂µAµ(x) = 0 ∀x. On the

lattice, this condition becomes:

F (Ω) ≡ ∑
x,µ

Re Tr (Ω(x)†Uµ(x)Ω(x + µ̂)) maximum (3.11)

The gauge-fixing functional F has many local maxima. To specify the gauge uniquely,

the gauge condition above refers to the global maximum. In practice however, the gauge

transformation Ω is found by an iterative local maximization of F , which terminates

when any local maximum has been reached.

It is commonly believed that the effect of choosing a local maximum of (3.11) rather

than the global maximum is small. The following argument is often presented to support

this view. A given gauge configuration is gauge-fixed n times, each time after perform-

ing a random gauge transformation; this procedure generates many gauge copies, each

corresponding to the nearest local extremum to the random starting point along the

gauge orbit. It is observed [19] that the difference between gluon propagators measured

on copies corresponding to the largest and the smallest values of (3.11) is statistically

insignificant. The flaw in this argument is that the number n of gauge copies considered

(typically 30 or less) is extremely small compared to the total number of local extrema

of (3.11): for simple entropic reasons, all copies considered miss the global maximum by

similar amounts, and no reliable information can be extracted about the gluon propaga-

tor in the global maximum configuration.

Further evidence for this situation has recently been provided in another gauge, the

Direct Maximal Center (DMC) gauge [20]. Although the functional FDMC(Ω) to be

maximized differs from (3.11), a similar approach of local iterative maximization is taken,

with similar problems. In this case however, one converges to a large value F̃L of FDMC

by starting from a Landau gauge copy. This value F̃L can then be compared with the

values obtained from n random starting points. One may fit the maximum value among
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n copies, F̃ (n), by a reasonable ansatz like a series in 1/n, and extrapolate to n →∞. It

turns out that the extrapolated value falls well below F̃L, which is itself below the global

maximum [21].

Since in Landau gauge as in DMC gauge, the number of local maxima is expected to

grow exponentially with the lattice volume, we see no reason for the Landau gauge to be

qualitatively different. Therefore, one should consider the possible effects of selecting a

local rather than the global maximum of (3.11) with a great deal of caution. This is the

motivation for our study of the gluon propagator in a well-defined, unambiguous gauge.

3.2 SU(3) Laplacian gauge fixing

In [16], Vink and Wiese proposed the following method to fix the gauge unambiguously in

SU(N). Construct the N lowest-lying eigenvectors v(i) of the covariant Laplacian. Each

eigenvector has N complex color components at each site x, so that a complex N by N

matrix can be constructed with these N eigenvectors. Project this matrix onto SU(N) by

polar decomposition. Choose the gauge which rotates this SU(N) matrix to the identity

at each site. The gauge is unambiguously defined, except for these gauge configurations

where some of the N lowest eigenvalues are degenerate. Such configurations are genuine

Gribov copies; they never occur in practice. This approach has been tested for SU(2)

and U(1) [22] and it was shown to reduce to the Landau gauge in the continuum limit

except for exceptional configurations ( e.g. an instanton background). Here, for SU(3),

we use a slightly modified procedure which requires two eigenvectors only, v(1) and v(2).

First, apply a gauge transformation Ω(1)(x) which rotates v(1)(x) to



|v(1)(x)|

0

0


.

Five real components of the rotated v(1)(x) must vanish, which specifies five constraints.

Therefore Ω(1)(x) is not fully specified, but has 8 − 5 = 3 degrees of freedom. Any

satisfactory Ω(1) can be used.

To completely fix the gauge, we use the second eigenvector v(2), already rotated by

Ω(1) to




v
(2)
1

v
(2)
2

v
(2)
3


. Three additional constraints are obtained by requiring v(2) to be rotated

to




v
(2)
1√

|v(2)
2 |2 + |v(2)

3 |2
0


. This fixes the gauge completely and uniquely.

Note that the second rotation is in an SU(2) subgroup, since it leaves v
(2)
1 untouched.

This indicates how to generalize this construction to SU(N): the first rotation fixes

(2N − 1) constraints, which leaves (N2 − 1) − (2N − 1) = ((N − 1)2 − 1) degrees of

freedom, forming a subgroup SU(N − 1). The next step reduces the gauge freedom

to SU(N − 2), etc... down to SU(2). This procedure and its associated local gauge

ambiguities are under study [23].

The Laplacian gauge so defined has the great virtue of being unambiguous. Hence it is

the appropriate tool to address our concern about the effect of local extrema of the usual
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Landau gauge. It also has strong similarities with Landau gauge: it is smooth, Lorentz-

symmetric, and gauge-fixes a pure gauge lattice configuration (gauge-transformed from

Uµ(x) = 1 ∀x, µ) back to U = 1. Nevertheless, it is a different gauge: its perturbative

definition is under consideration [24]; it differs from Landau gauge most strongly where

the magnitude of the eigenvectors |v(1,2)(x)| becomes small.

4. Results

Since most of the previous studies were performed in the Landau gauge, it is important to

compare our Laplacian-gauge propagator with the Landau-gauge one. For this purpose,

we have taken, for our analysis, lattice configurations available on the Gauge Connection

database [26], which had already been gauge fixed to Landau gauge with the usual

local Over-Relaxation method [27]. These are 163 × 32 configurations, at β = 5.8 (100

configurations) and 6.0 (200 configurations).

Figure 1: Comparison of the transverse gluon propagator in Landau and Laplacian

gauge on a 163×32 lattice at β = 6.0. To highlight the infrared differences, the quantity

(q̂2 + m2
0)D(q̂2) is plotted, where m2

0 ≡ 1/DLG(0).

The transverse gluon propagator is shown in Fig. 1 for the two gauges at β = 6.0. As

expected the ultraviolet behaviour is identical in the two gauges, whereas in the infrared,

which is the region of interest, significant differences are visible. Since we use a different

gauge, this should not come as a surprise. To make these infrared differences clear, we do

not show the usual quantity q2D(q2), which hides such differences completely as q2 → 0,
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but instead (q2 + m2
0)D(q2), where m2

0 ≡ 1/DLG(0) with DLG(0) the value of D(0) in

the Laplacian gauge. The Laplacian propagator is clearly not as large as the Landau

propagator at low momenta.

Figure 2: F (q̂2) as a function of |q̂| in lattice units after applying the cylindrical cut in

momentum.

The difference between Landau and Laplacian gauge can also be seen in the deviation

of F (q2) from zero. Whereas in Landau gauge we find that

q̂µq̂νDaa
µν � 1 (4.12)

as expected, in the Laplacian gauge F (q2) is not small, and has a maximum at low

momenta. The behaviour of F (q2) is shown in Fig. 2 for 84 and 163 × 32 lattices at

β = 6.0. Since F (q2 = 0) can not be obtained by our projection, we only have one point,

at the smallest momentum 2π/32 on the larger lattice, to ascertain that F (q2) really has

a maximum and does not keep diverging as q2 → 0. But since the data are systematically

higher for the smaller lattice than for the larger one, it seems unlikely that increasing

the lattice size further would bring the infrared data up and remove the maximum.

It is interesting to examine the volume dependence of the zero-momentum propagator

D(0). In the Landau gauge, Zwanziger has argued that D(0) should vanish in the infinite

lattice volume limit [9]. A recent lattice study in SU(2) at finite temperature [19] seems

indeed to indicate such a behaviour. In contrast, in the Laplacian gauge, we find that

D(0) is finite and volume independent for large enough volumes. The volume dependence

and scaling of D(0) in physical units is displayed in Fig. 3 where we collected results

from β = 5.7, 6.0, 6.2 and 6.5. D(0) displays reasonable scaling, and appears quite
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Figure 3: D(0) versus volume in physical units. The dashed line is a fit to the form

a exp−V/V0 + c.

volume-independent for volumes larger than ∼ 1/2 fm4. We find D(0) = 15.5(2) GeV−2,

or D(0)−1/2 = 254(2) MeV, corresponding to a length scale of ∼ 0.8 fm. Since D(0)

measures correlations of the Aa
µ field, the length associated with D(0) determines the

domain over which the gluon field remains correlated in the Laplacian gauge. If the

lattice dimensions become smaller than this characteristic length, then one expects finite

size effects to become appreciable. This is indeed what is observed, as shown in Fig.3,

with an approximate volume dependence of exp(−V/V0) with V the lattice volume and

V0 ∼ D(0)2.

On the lattice, the Lorentz symmetry is only approximately restored. Lattice artifacts

cause some dependence of D(q) on the orientation of the vector q rather than just on

q2. To minimize these discretization effects, we filter our data by making a cylindrical

cut in momentum along a reference direction n̂ = 1
2
(1, 1, 1, 1), in the same manner as in

Ref. [14]. Namely, we only consider momenta obeying the criterion |∆q̂| < 2π/Ls, where

Ls is the number of sites in the spatial direction, and ∆q̂ is the momentum transverse

to n̂ (∆q̂ = q̂ − q̂.n̂ n̂). Using these filtered data which allow a direct comparison with

[14], we examine the various proposals discussed in the Introduction for the infrared

behaviour of the propagator. We find that Gribov type parametrizations [6, 7] as well

as infrared enhancement of the type (q2)−2 [2, 4, 5] are excluded [28]. The ansatz of

Marenzoni et al. [13],

D(q2) =
Z

(q2)1+α + M2
, (4.13)
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with a non-perturbative anomalous dimension α, gives a better description of the lattice

data than the aforementioned parametrizations, but, as seen in Fig. 4, underestimates

the peak of the propagator. On the other hand, Cornwall [10] allows for a dynamically

generated gluon mass which vanishes at large momentum in accord with perturbation

theory. Using a special set of DSE referred to as a gauge invariant “pinch technique”,

he obtains the following solution for the gluon propagator

D(q2) = Z
[(

q2 + M2(q2)
)

ln
q2 + 4M2(q2)

Λ2

]−1

with

M(q2) = M

{
ln [(q2 + 4M2)/Λ2]

ln [4M2/Λ2]

}−6/11

(4.14)

Figure 4: The gluon propagator D(q̂2) multiplied by (q̂2 + m2
0) on the 163× 32 lattice at

β = 6.0. The dashed-dotted line shows the fit to the model by Marenzoni et al. eq.(4.13),

the solid line to Cornwall’s model eq.(4.14) and the dashed line to model A of Ref. [14],

eq.(4.15).

Cornwall’s proposal provides a reasonable fit to the data over the whole momentum

range (with χ2/n.d.f = 2.5). Furthermore, it predicts the correct value for D(0), even

when this point is excluded from the fit. The quality of this fit can be seen in Fig. 4.

For comparison we also fitted our data to the form suggested by Leinweber et al. [14]

where two terms were used, one to describe the ultraviolet behaviour of the form DUV ∼
1

q2+M2 L(q2, M), and one the infrared of the form DIR ∼ 1/(q2 + M2)1+α. The exact
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form, referred to as model A, as taken from ref. [14], is

D(q2) = Z
[

AM2α

(q2 + M2)1+α
+

1

q2 + M2
L(q2, M)

]

L(q2, M) =
{

1

2
ln

[
(q2 + M2)(q−2 + M−2)

]}−13/22

(4.15)

This parametrization, which includes one more parameter than Cornwall’s and is purely

phenomenological, does fit the data best over the whole momentum range (with χ2/n.d.f =

1.2) excluding q2 = 0. However it underestimates the value of D(0) by about 30%.

Figure 5: Scaling of the data at β = 5.8 and 6.0 on the 163 × 32 lattice.

We address the question of scaling by comparing our results at β = 5.8 and β = 6.0

on the largest lattice. In Fig. 5 we show the two sets of data lying on the best scaling

curve. The shifts required along the horizontal and vertical axes determine the ratios of

the wavefunction renormalization constants and of the lattice spacings. We find

aβ=6.0/aβ=5.8 = 0.71± 0.02 and Zβ=6.0/Zβ=5.8 = 1.07± 0.075 .

(4.16)

with strongly correlated errors. The ratio of lattice spacings is in agreement with the

value of 0.72(4) obtained from a detailed analysis of the static potential [25]. The ratio

of the Z-factors is within what is expected from perturbation theory, and in agreement

with the value of 1.04(3) of Ref. [14]. In other words, scaling is very well satisfied for

the Laplacian gauge, and performing the fits at β = 6.0 gives the behaviour of the gluon

propagator in the physical regime.
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Figure 6: The inverse gluon propagator at low momentum in Landau gauge, at β = 6.0

on the 163 × 32 lattice. The filled triangles and crosses show the data which are kept

and discarded by the cylindrical momentum cut respectively. Three extrapolations to

negative q̂2 are shown: quadratic and cubic polynomials in q̂2, and Cornwall’s model.

Note the instability of the pole D−1(q̂2) = 0 with respect to the type of extrapolation

chosen.

We focus now on the infrared behaviour of the transverse propagator. Figs. 6 and 7

show the inverse propagator as a function of q̂2 in the two gauges. Two advantages of

the Laplacian gauge become visible. First, the orientation of the momentum q has less

effect than in Landau gauge: the data points at a given value of q̂2 show less scatter,

and the cylindrical cut is not as essential as in Landau gauge in the infrared region. At

a given lattice spacing, the Laplacian gauge approximates better the Lorentz symmetry

of the continuum. This reduction of lattice artifacts is understandable since the gauge is

fixed by considering the lowest-lying eigenvectors of the Laplacian, which are the least

sensitive to UV-cutoff effects. In contrast, Landau gauge comes from the iteration of a

completely local, UV-dominated process. Better rotational symmetry allows for better

accuracy, or for the same accuracy on coarser lattices.

Second, the inverse propagator is much closer to a linear function of q̂2 in Laplacian

gauge. If it were the propagator for a free boson, it would be described by a straight

line since 1/D(q2) = Z−1(q2 + m2). Having curvature means that one has a momentum-

dependent effective mass Π(q2). In particular, the infrared mass Π(0) and the pole mass

Π(q2) such that (q2 + Π(q2)) = 0 are different. The latter is of special interest, because

of its gauge independence at least to all orders in perturbation theory. Finding a pole,
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Figure 7: Same as Fig.6, for the Laplacian gauge. The reduced vertical scatter of the

data at a given momentum indicates a superior restoration of rotational symmetry. The

reduced curvature as a function of q̂2 improves the stability of the pole with respect to

the type of extrapolation.

i.e. a zero of the inverse propagator, requires the extrapolation of our data to negative

q̂2. The less curvature in the inverse propagator in the infrared, the more reliable the

extrapolation will be.

Three types of extrapolation are displayed in the figures: quadratic and cubic poly-

nomials in q̂2, and our fit to Cornwall’s model. Note how the location of the pole, and

even its existence, are affected by the choice of extrapolation in the Landau gauge. The

coefficients a1, a2, a3 of the cubic polynomial extrapolation keep increasing, indicating

poor stability. Essentially, no statement about a pole can be made in that gauge. Differ-

entiating between a cubic fit (which gives a pole) and a Cornwall-type fit (which doesn’t)

will require extremely accurate data on large lattices. Independently of the Gribov prob-

lem, Landau gauge does not appear promising to study this issue. In contrast, the pole

remains relatively stable in Laplacian gauge. Given the convexity of the data, a lower

bound is provided by a linear fit near q2 = 0, which defines the (gauge-dependent) in-

frared mass. Quadratic and cubic terms in the polynomial extrapolation represent small

corrections of decreasing size. One can already state with confidence that a pole exists,

and make some estimate of the gluon pole mass. A similar study on a lattice of double

size, as was considered in Ref. [14], would produce more than four times as many points

in the same q̂2 interval, and should allow for an accurate determination of the pole mass.

We also measure the correlator of the gluon field averaged over a time-slice. Namely,
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Figure 8: Time-slice gluon correlator, in Laplacian gauge, at β = 5.8 and 6.0. The dashed

lines show Cornwall’s model fitted to D(q̂2) after the cylindrical momentum cut; the solid

lines are direct fits to the time-slice correlators, excluding the first few time-slices.

we measure

C(t) =
1

L3
s

1

8

8∑
a=1

1

3

3∑
µ=1

(
L3

s∑
x

Aa
µ(~x, 0)) (

L3
s∑

x

Aa
µ(~x, t)) (4.17)

which is displayed in Fig.8. At large time separations t, this correlator should decay

exponentially like exp(−mpolet), giving us another approach to extracting the pole mass.

We use this observable to perform a crosscheck on this mass, and as a further study

of the systematic errors in its determination. This correlator is measured on the same

configurations as D(q̂2), so it contains no additional information. But the same infor-

mation is given a different weight, so that a fit to C(t) will give different results than a

fit to D(q̂2), especially after the cylindrical momentum cut. Therefore, we fit Cornwall’s

model directly to C(t) instead of D(q̂2). Remarkably, the difference is rather small, which

attests again to the soundness of the model. The dashed lines in Fig.8 show the original

fit of Cornwall’s ansatz to D(q̂2), which already provides a fair description of the data.

The solid lines represent a direct fit of the same 3-parameter ansatz to C(t), excluding

the first few time-slices which otherwise completely dominate the fit. Given the 3 fitted

parameters, one can then solve D−1(q̂2) = 0 numerically, with D(q̂2) as per eq.(4.14).

The corresponding pole mass varies little from one fit to the other, and remains roughly

constant in physical units at β = 5.8 and 6.0. Also, a model-independent extraction of

the pole mass, by measuring the effective mass meff (t) = −Ln(C(t + 1)/C(t)), gives

a consistent value. Taking these results into account, together with the quadratic and
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cubic extrapolations displayed in Fig.7, we estimate the pole mass to lie in the interval

[520, 750] MeV, where we used a−1(β = 6.0) = 1.885 GeV to convert to physical units.

The lower bound is given by the infrared mass, which corresponds to a linear extrapola-

tion of D−1(q̂2); the upper bound is provided by the largest value obtained when fitting

to our data Cornwall’s model. A reasonable central value is 640 MeV, which corresponds

to Cornwall’s extrapolation in Fig.7.

We have performed a similar exercise for the Landau gauge. The fit of Cornwall’s

model to D(q̂2) or C(t) is quite satisfactory, but the equation D−1(q̂2) = 0, gives a

complex pole, far from the real axis. Note that Ref. [29] also finds oscillatory behaviour

for the time-slice correlator in 3d SU(2) theory fixed to Landau gauge, reflecting a

complex pole. This disagreement with the Laplacian gauge may be puzzling at first sight,

since one expects the pole to be gauge invariant. However, in our view, the complex pole

which appears in the Landau gauge may well be the result of the inadequacy of the

lattice gauge fixing procedure used.

5. Conclusions

We have evaluated the gluon propagator using the Laplacian gauge which avoids lattice

Gribov copies. We extract the transverse part of the gluon propagator and verify its

scaling in this gauge. Examining the scaling and volume dependence of D(0), we reach

the conclusion that it is a constant beyond a lattice size of∼ 0.8 fm. This size is consistent

with the characteristic length scale determined from D(0) itself as the range beyond

which the gluon field decorrelates in this gauge. The decrease in D(0) in the Landau

gauge, recently observed in finite temperature SU(2) simulations on large lattices [19],

might be an artifact of the gauge fixing procedure, since as the volume increases this

local procedure is expected to be more severely affected by Gribov copies as explained

in Section 3.

Among the various proposals which are physically founded, Cornwall’s model [10]

provides a reasonable fit to the lattice results over the whole momentum range, and

in addition it predicts the correct finite value of D(0). Although model A of Ref. [14]

provides a better overall fit to the data, it misses D(0) by ∼ 30% and has no theoretical

foundation. We find it satisfying that the lattice data seem to favour a model with a

dynamically generated mass.

By looking at the inverse propagator D−1(q̂2) at small momenta, we see that the

Laplacian gauge is superior to the Landau gauge in its restoration of Lorentz symmetry

on the lattice. Furthermore, it turns out that the inverse propagator is almost linear in

q̂2 in the Laplacian gauge. This allows for a reasonably reliable extrapolation to q̂2 < 0,

unlike in Landau gauge. We test a variety of extrapolation ansätze. They consistently

yield a robust pole mass at ∼ 640± 110 MeV.
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