37 research outputs found

    Self-gravitating Brownian systems and bacterial populations with two or more types of particles

    Full text link
    We study the thermodynamical properties of a self-gravitating gas with two or more types of particles. Using the method of linear series of equilibria, we determine the structure and stability of statistical equilibrium states in both microcanonical and canonical ensembles. We show how the critical temperature (Jeans instability) and the critical energy (Antonov instability) depend on the relative mass of the particles and on the dimension of space. We then study the dynamical evolution of a multi-components gas of self-gravitating Brownian particles in the canonical ensemble. Self-similar solutions describing the collapse below the critical temperature are obtained analytically. We find particle segregation, with the scaling profile of the slowest collapsing particles decaying with a non universal exponent that we compute perturbatively in different limits. These results are compared with numerical simulations of the two-species Smoluchowski-Poisson system. Our model of self-attracting Brownian particles also describes the chemotactic aggregation of a multi-species system of bacteria in biology

    Tuning the shape of the condensate in spontaneous symmetry breaking

    Full text link
    We investigate what determines the shape of a particle condensate in situations when it emerges as a result of spontaneous breaking of translational symmetry. We consider a model with particles hopping between sites of a one-dimensional grid and interacting if they are at the same or at neighboring nodes. We predict the envelope of the condensate and the scaling of its width with the system size for various interaction potentials and show how to tune the shape from a delta-peak to a rectangular or a parabolic-like form.Comment: 4 pages, 2 figures, major revision, the title has been change

    Recurrent mutations of BRCA1, BRCA2 and PALB2 in the population of breast and ovarian cancer patients in Southern Poland

    Get PDF
    Background Mutations in the BRCA1, BRCA2 and PALB2 genes are well-established risk factors for the development of breast and/or ovarian cancer. The frequency and spectrum of mutations in these genes has not yet been examined in the population of Southern Poland. Methods We examined the entire coding sequences of the BRCA1 and BRCA2 genes and genotyped a recurrent mutation of the PALB2 gene (c.509_510delGA) in 121 women with familial and/or early-onset breast or ovarian cancer from Southern Poland. Results A BRCA1 mutation was identified in 11 of 121 patients (9.1 %) and a BRCA2 mutation was identified in 10 of 121 patients (8.3 %). Two founder mutations of BRCA1 accounted for 91 % of all BRCA1 mutation carriers (c.5266dupC was identified in six patients and c.181 T > G was identified in four patients). Three of the seven different BRCA2 mutations were detected in two patients each (c.9371A > T, c.9403delC and c.1310_1313delAAGA). Three mutations have not been previously reported in the Polish population (BRCA1 c.3531delT, BRCA2 c.1310_1313delAAGA and BRCA2 c.9027delT). The recurrent PALB2 mutation c.509_510delGA was identified in two patients (1.7 %). Conclusions The standard panel of BRCA1 founder mutations is sufficiently sensitive for the identification of BRCA1 mutation carriers in Southern Poland. The BRCA2 mutations c.9371A > T and c.9403delC as well as the PALB2 mutation c.509_510delGA should be included in the testing panel for this population

    Overdiagnosis in breast cancer chemoprevention trials

    No full text

    Effect of Chain Extending Cross-Linkers on the Disintegration Behavior of Composted PBAT/PLA Blown Films

    Get PDF
    A biodegradable blend of PBAT—poly(butylene adipate-co-terephthalate)—and PLA—poly(lactic acid)—for blown film extrusion was modified with four multi-functional chain extending cross-linkers (CECL). The anisotropic morphology introduced during film blowing affects the degradation processes. Given that two CECL increased the melt flow rate (MFR) of tris(2,4-di-tert-butylphenyl)phosphite (V1) and 1,3-phenylenebisoxazoline (V2) and the other two reduced it (aromatic polycarbodiimide (V3) and poly(4,4-dicyclohexylmethanecarbodiimide) (V4)), their compost (bio-)disintegration behavior was investigated. It was significantly altered with respect to the unmodified reference blend (REF). The disintegration behavior at 30 and 60 °C was investigated by determining changes in mass, Young’s moduli, tensile strengths, elongations at break and thermal properties. In order to quantify the disintegration behavior, the hole areas of blown films were evaluated after compost storage at 60 °C to calculate the kinetics of the time dependent degrees of disintegration. The kinetic model of disintegration provides two parameters: initiation time and disintegration time. They quantify the effects of the CECL on the disintegration behavior of the PBAT/PLA compound. Differential scanning calorimetry (DSC) revealed a pronounced annealing effect during storage in compost at 30 °C, as well as the occurrence of an additional step-like increase in the heat flow at 75 °C after storage at 60 °C. The disintegration consists of processes which affect amorphous and crystalline phase of PBAT in different manner that cannot be understood by a hydrolytic chain degradation only. Furthermore, gel permeation chromatography (GPC) revealed molecular degradation only at 60 °C for the REF and V1 after 7 days of compost storage. The observed losses of mass and cross-sectional area seem to be attributed more to mechanical decay than to molecular degradation for the given compost storage times
    corecore