22 research outputs found

    Melatonin protects against apoptosis-inducing factor (AIF)-dependent cell death during acetaminophen-induced acute liver failure.

    No full text
    Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure and is primarily caused by cytochrome P450 (CYP) 2E1-driven conversion of APAP into hepatotoxic metabolites. Several reports showed that melatonin attenuated APAP-induced acute liver failure. Nevertheless, the exact mechanism remains obscure. In the present study, we investigated the effects of melatonin on apoptosis-inducing factor (AIF)-dependent cell death in APAP-induced acute liver failure. Mice were intraperitoneally (i.p.) injected with different doses of melatonin (1.25, 5, 20 mg/kg) 30 min before APAP (300 mg/kg, i.p.). As expected, melatonin significantly alleviated APAP-induced cell death, as determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay. Further analysis showed that melatonin significantly attenuated APAP-induced activation of the serine/threonine kinase receptor interacting protein 1 (RIP1). In addition, melatonin inhibited APAP-induced hepatic c-Jun N-terminal kinase (JNK) phosphorylation and mitochondrial Bax translocation. Correspondingly, melatonin inhibited APAP-induced translocation of AIF from mitochondria to nuclei. Interestingly, no changes were induced by melatonin on hepatic CYP2E1 expression. In addition, melatonin had little effect on APAP-induced hepatic glutathione (GSH) depletion. In conclusion, melatonin protects against AIF-dependent cell death during APAP-induced acute liver failure through its direct inhibition of hepatic RIP1 and subsequent JNK phosphorylation and mitochondrial Bax translocation

    Melatonin as a Neuroprotective Agent in the Rodent Models of Parkinson’s Disease: Is it All Set to Irrefutable Clinical Translation?

    No full text

    Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow–Robin perivascular spaces

    No full text

    Melatonin and Parkinson Disease: Current Status and Future Perspectives for Molecular Mechanisms

    No full text

    Centrality, rapidity and transverse momentum dependence of J/\u3c8 suppression in Pb-Pb collisions at 1asNN= 2.76TeV

    Get PDF
    The inclusive J/.nuclear modification factor (R-AA) in Pb-Pb collisions at root(NN)-N-S = 2.76TeVhas been measured by ALICE as a function of centrality in the e+ e-decay channel at mid-rapidity (| y| < 0.8) and as a function of centrality, transverse momentum and rapidity in the + -decay channel at forward-rapidity (2.5 < y < 4). The J/.yields measured in Pb-Pb are suppressed compared to those in ppcollisions scaled by the number of binary collisions. The RAAintegrated over a centrality range corresponding to 90% of the inelastic Pb-Pb cross section is 0.72 - 0.06(stat.) - 0.10(syst.) at mid-rapidity and 0.58 - 0.01(stat.) - 0.09(syst.) at forward-rapidity. At low transverse momentum, significantly larger values of RAAare measured at forward-rapidity compared to measurements at lower energy. These features suggest that a contribution to the J/.yield originates from charm quark (re) combination in the deconfined partonic medium
    corecore