225 research outputs found

    Single polymer dynamics: coil-stretch transition in a random flow

    Full text link
    By quantitative studies of statistics of polymer stretching in a random flow and of a flow field we demonstrate that the stretching of polymer molecules in a 3D random flow occurs rather sharply via the coil-stretch transition at the value of the criterion close to theoretically predicted.Comment: 4 pages, 5 figure

    Dynamics of threads and polymers in turbulence: power-law distributions and synchronization

    Full text link
    We study the behavior of threads and polymers in a turbulent flow. These objects have finite spatial extension, so the flow along them differs slightly. The corresponding drag forces produce a finite average stretching and the thread is stretched most of the time. Nevertheless, the probability of shrinking fluctuations is significant and is known to decay only as a power-law. We show that the exponent of the power law is a universal number independent of the statistics of the flow. For polymers the coil-stretch transition exists: the flow must have a sufficiently large Lyapunov exponent to overcome the elastic resistance and stretch the polymer from the coiled state it takes otherwise. The probability of shrinking from the stretched state above the transition again obeys a power law but with a non-universal exponent. We show that well above the transition the exponent becomes universal and derive the corresponding expression. Furthermore, we demonstrate synchronization: the end-to-end distances of threads or polymers above the transition are synchronized by the flow and become identical. Thus, the transition from Newtonian to non-Newtonian behavior in dilute polymer solutions can be seen as an ordering transition.Comment: 13 pages, version accepted to Journal of Statistical Mechanic

    Synthesis and examination of nanocomposites based on poly(2-hydroxyethyl methacrylate) for medicinal use

    Get PDF
    Preparation of poly(2-hydroxyethyl methacrylate) (PHEMA) based nanocomposites using different approaches such as synthesis with water as the porogen, filling of polymer matrix by silica and formation of interpenetrating polymer networks with polyurethane was demonstrated. Incorporation of various biologically active compounds (BAC) such as metronidazole, decamethoxin, zinc sulphate, silver nitrate or amino acids glycine and tryptophan into nanocomposites was achieved. BAC were introduced into the polymer matrix either (1) directly, or (2) with a solution of colloidal silica, or (3) through immobilization on silica (sol-densil). Morphology of prepared materials was investigated by laser scanning microscopy and low-vacuum scanning electron microscopy. In vacuum freeze-drying, prior imaging was proposed for improving visualization of the porous structure of composites. The interaction between PHEMA matrix and silica filler was investigated by IR spectroscopy. Adsorption of 2-hydroxyethyl methacrylate and BAC from aqueous solution on the silica surface was also examined. Phase composition and thermal stability of composites were studied by the differential thermogravimetry/differential thermal analysis. Release of BAC into water medium from prepared composites were shown to depend on the synthetic method and differed significantly. Obtained PHEMA-base materials which are characterized by controlled release of BAC have a strong potential for application in manufacturing of different surgical devices like implants, catheters and drainages. © 2017, The Author(s)

    New angiogenic regulators produced by TAMs: perspective for targeting tumor angiogenesis

    Get PDF
    Angiogenesis is crucial to the supply of a growing tumor with nutrition and oxygen. Inhibition of angiogenesis is one of the main treatment strategies for colorectal, lung, breast, renal, and other solid cancers. However, currently applied drugs that target VEGF or receptor tyrosine kinases have limited efficiency, which raises a question concerning the mechanism of patient resistance to the already developed drugs. Tumor-associated macrophages (TAMs) were identified in the animal tumor models as a key inducer of the angiogenic switch. TAMs represent a potent source not only for VEGF, but also for a number of other pro-angiogenic factors. Our review provides information about the activity of secreted regulators of angiogenesis produced by TAMs. They include members of SEMA and S100A families, chitinase-like proteins, osteopontin, and SPARC. The COX-2, Tie2, and other factors that control the pro-angiogenic activity of TAMs are also discussed. We highlight how these recent findings explain the limitations in the efficiency of current anti-angiogenic therapy. Additionally, we describe genetic and posttranscriptional mechanisms that control the expression of factors regulating angiogenesis. Finally, we present prospects for the complex targeting of the pro-angiogenic activity of TAMs

    Premalignant changes in the bronchial epithelium are prognostic factors of distant metastasis in non-small cell lung cancer patients

    Get PDF
    Background: The study assessed the possibility of dividing patients into groups based on the assessment of morphological changes in the epithelium of small-caliber bronchi located near the primary tumor in order to predict high and low risks of distant metastasis of non-small cell lung cancer. Methods: In 171 patients with non-small cell lung cancer (T1-4N0-3M0) in small-caliber bronchi taken at a distance of 3–5 cm from the tumor, various variants of morphological changes in the bronchial epithelium (basal cell hyperplasia (BCH), squamous cell metaplasia (SM), and dysplasia (D)) were assessed. Long-term results of treatment, namely, distant metastasis, were assessed after 2 and 5 years. Results: During the follow-up period, distant metastases were found in 35.1% (60/171) of patients. Most often, they were observed in patients of the high-risk group: BCH+SM−D−(51.6%, 40/95) and BCH−SM+D+ (54.4%, 6/11). Less often, distant metastases were observed in low-risk group patients: BCH+SM+D− (6.7%, 3/45) and BCH−SM−D−(10.0%, 2/20). Tumor size, grade, and stage were significant predictors of metastasis only in the high-risk group. The 5-year metastasis-free survival was better in the low-risk group of distant metastases. Conclusions: Isolated BCH or dysplasia in small bronchi distant from foci of tumor isassociated with a high-risk distant metastasis and less 5-year metastasis-free survival
    corecore