805 research outputs found

    Fifty years of the Glauber diffraction theory

    Full text link
    In this minireview a historical excursus in theoretical studies related to the Glauber diffraction theory has been presented with an accent on the recent developments in this subject.Comment: 22 pages, 4 figures, in russian;v2: an atempt to improve hyphenatio

    The new ultra high-speed all-optical coherent streak-camera

    Get PDF
    In the present paper a new type of ultra high-speed all-optical coherent streak-camera was developed. It was shown that a thin resonant film (quantum dots or molecules) could radiate the angular sequence of delayed ultra-short pulses if a transverse spatial periodic distribution of the laser pump field amplitude has a triangle shape

    Morphology of ceramic particles produced by plasma-chemical synthesis

    Get PDF
    Thermal and diffusion processes in the droplet weakly concentrated metal salt solution during its heating in the plasma chemical reactor, in order to synthesize metal oxide powders are considered. Numerical study is based on previously proposed physical-mathematical model. The results of numerical calculations are analyzed to assess the possible influence of the operation parameters of the reactor and the characteristics of the initial solution (precursor) on the morphology of the particles formed

    Collective and static properties of model two-component plasmas

    Full text link
    Classical MD data on the charge-charge dynamic structure factor of two-component plasmas (TCP) modeled in Phys. Rev. A 23, 2041 (1981) are analyzed using the sum rules and other exact relations. The convergent power moments of the imaginary part of the model system dielectric function are expressed in terms of its partial static structure factors, which are computed by the method of hypernetted chains using the Deutsch effective potential. High-frequency asymptotic behavior of the dielectric function is specified to include the effects of inverse bremsstrahlung. The agreement with the MD data is improved, and important statistical characteristics of the model TCP, such as the probability to find both electron and ion at one point, are determined.Comment: 25 pages, 6 figures, 5 tables. Published in Physical Review E http://link.aps.org/abstract/PRE/v76/e02640

    Ball Milled Gd Flakes Subjected to Heat Treatments: Structure, Magnetic and Magnetocaloric Properties

    Get PDF
    Gd flake samples were prepared by conventional ball milling technique starting from rapidly quenched Gd ribbons and followed by vacuum annealing in different conditions. Heat treatments were conducted in a vacuum at selected temperatures up to 600 K. The structural features, magnetic and magnetocaloric properties were comparatively analyzed. The change in magnetic entropy was calculated using an experimental set of magnetic isotherms measured in a wide range of temperatures. The variations in the refrigeration capacity and the exponent of the magnetic entropy change in the external magnetic field were carefully calculated and analyzed.The research funding from the Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged. This research was supported in part by the Universidad del País Vasco/Euskal Herriko Unibertsitatea UPV/EHU Research Groups Funding

    Mathematical modelling of the liquid atomization process by cocurrent gas flow

    Get PDF
    This paper focuses on the physical-mathematical model of liquid atomization in the spray pattern of an ejection nozzle. A flow field of a gas phase behind the nozzle section is computed using the Ansys Fluent package. Dynamics of molten metal droplets in the gas phase within a trajectory approach is calculated. Using the presented model, numerical calculation results are given

    Non-Ohmic variable-range hopping transport in one-dimensional conductors

    Full text link
    We investigate theoretically the effect of a finite electric field on the resistivity of a disordered one-dimensional system in the variable-range hopping regime. We find that at low fields the transport is inhibited by rare fluctuations in the random distribution of localized states that create high-resistance ``breaks'' in the hopping network. As the field increases, the breaks become less resistive. In strong fields the breaks are overrun and the electron distribution function is driven far from equilibrum. The logarithm of the resistance initially shows a simple exponential drop with the field, followed by a logarithmic dependence, and finally, by an inverse square-root law.Comment: Version accepted to Phys. Rev. Let
    corecore