225 research outputs found

    On the origin of 140 GHz emission from the 4 July 2012 solar flare

    Get PDF
    The sub-THz event observed on the 4 July 2012 with the Bauman Moscow State Technical University Radio Telescope RT-7.5 at 93 and 140~GHz as well as Kislovodsk and Mets\"ahovi radio telescopes, Radio Solar Telescope Network (RSTN), GOES, RHESSI, and SDO orbital stations is analyzed. The spectral flux between 93 and 140 GHz has been observed increasing with frequency. On the basis of the SDO/AIA data the differential emission measure has been calculated. It is shown that the thermal coronal plasma with the temperature above 0.5~MK cannot be responsible for the observed sub-THz flare emission. The non-thermal gyrosynchrotron mechanism can be responsible for the microwave emission near 1010~GHz but the observed millimeter spectral characteristics are likely to be produced by the thermal bremsstrahlung emission from plasma with a temperature of about 0.1~MK.Comment: 18 pages, 6 figure

    Analysis of cosmic ray variations observed by the CARPET in association with solar flares in 2011-2012

    Get PDF
    The CARPET cosmic ray detector was installed on April 2006 at CASLEO (Complejo Astronmico El Leoncito) at the Argentinean Andes (31.8S, 69.3W, 2550 m, Rc=9.65 GV). This instrument was developed within an international cooperation between the Lebedev Physical Institute RAS (LPI; Russia), the Centro de Radio Astronomia e Astrofsica Mackenzie (CRAAM; Brazil) and the Complejo Astronmico el Leoncito (CASLEO; Argentina). In this paper we present results of analysis of cosmic ray variations recorded by the CARPET during increased solar flare activity in 2011-2012. Available solar and interplanetary medium observational data obtained onboard GOES, FERMI, ISS, as well as cosmic ray measurements by ground-based neutron monitor network were also used in the present analysis.Fil: Makhmutov, V.. Lebedev Physical Institute; Rusia. Universidade Presbiteriana Mackenzie; BrasilFil: Raulin, J. P.. Universidade Presbiteriana Mackenzie; BrasilFil: De Mendonca, R. R. S.. National Institute for Space Research; BrasilFil: Bazilevskaya, G. A.. Lebedev Physical Institute; RusiaFil: Correia, E.. Universidade Presbiteriana Mackenzie; Brasil. National Institute for Space Research; BrasilFil: Kaufmann, Pierre. Universidade Presbiteriana Mackenzie; BrasilFil: Marun, Adolfo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Fernandez, German Enzo Leonel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Echer, E.. National Institute for Space Research; Brasi

    Analysis of atmospheric pressure and temperature effects on cosmic ray measurements

    Get PDF
    In this paper, we analyze atmospheric pressure and temperature effects on the records of the cosmic ray detector CARPET. This detector has monitored secondary cosmic ray intensity since 2006 at Complejo Astronómico El Leoncito (San Juan, Argentina, 31S, 69W, 2550m over sea level) where the geomagnetic rigidity cutoff, Rc, is ~9.8 GV. From the correlation between atmospheric pressure deviations and relative cosmic ray variations, we obtain a barometric coefficient of ?0.440.01 %/hPa. Once the data are corrected for atmospheric pressure, they are used to analyze temperature effects using four methods. Three methods are based on the surface temperature and the temperature at the altitude of maximum production of secondary cosmic rays. The fourth method, the integral method, takes into account the temperature height profile between 14 and 111 km above Complejo Astronómico El Leoncito. The results obtained from these four methods are compared on different time scales from seasonal time variations to scales related to the solar activity cycle. Our conclusion is that the integral method leads to better results to remove the temperature effect of the cosmic ray intensity observed at ground level.Fil: De Mendonça, R. R. S.. National Institute for Space Research. Division of Space Geophysics; Brasil;Fil: Raulin, J. P.. Universidade Presbiteriana Mackenzie; Brasil;Fil: Echer, E.. National Institute for Space Research. Division of Space Geophysics; Brasil;Fil: Makhmutov, V. S.. Russian Academy of Sciences. Lebedev Physical Institute; Rusia;Fil: Fernandez, German Enzo Leonel. Consejo Nacional de Invest.cientif.y Tecnicas. Ctro Cientifico Tecnologico Conicet - San Juan. Complejo Astronomico

    A bright impulsive solar burst detected at 30 THz

    Get PDF
    Ground- and space-based observations of solar flares from radio wavelengths to gamma-rays have produced considerable insights but raised several unsolved controversies. The last unexplored wavelength frontier for solar flares is in the range of submillimeter and infrared wavelengths. Here we report the detection of an intense impulsive burst at 30 THz using a new imaging system. The 30 THz emission exhibited remarkable time coincidence with peaks observed at microwave, mm/submm, visible, EUV and hard X-ray wavelengths. The emission location coincides with a very weak white-light feature, and is consistent with heating below the temperature minimum in the atmosphere. However, there are problems in attributing the heating to accelerated electrons. The peak 30 THz flux is several times larger than the usual microwave peak near 9 GHz, attributed to non-thermal electrons in the corona. The 30 THz emission could be consistent with an optically thick spectrum increasing from low to high frequencies. It might be part of the same spectral component found at sub-THz frequencies whose nature remains mysterious. Further observations at these wavelengths will provide a new window for flare studies.Comment: 9 pages, 11 figures, accepted by Astrophysical Journal, March 23, 201

    Noise storm continua: power estimates for electron acceleration

    Full text link
    We use a generic stochastic acceleration formalism to examine the power LinL_{\rm in} (ergs−1{\rm erg s^{-1}}) input to nonthermal electrons that cause noise storm continuum emission. The analytical approach includes the derivation of the Green's function for a general second-order Fermi process, and its application to obtain the particular solution for the nonthermal electron distribution resulting from the acceleration of a Maxwellian source in the corona. We compare LinL_{\rm in} with the power LoutL_{\rm out} observed in noise storm radiation. Using typical values for the various parameters, we find that Lin∼1023−26L_{\rm in} \sim 10^{23-26} ergs−1{\rm erg s^{-1}}, yielding an efficiency estimate η≡Lout/Lin\eta \equiv L_{\rm out}/L_{\rm in} in the range 10^{-10} \lsim \eta \lsim 10^{-6} for this nonthermal acceleration/radiation process. These results reflect the efficiency of the overall process, starting from electron acceleration and culminating in the observed noise storm emission.Comment: Accepted for publication in Solar Physic

    Rapid Submillimeter Brightenings Associated with a Large Solar Flare

    Get PDF
    We present high time resolution observations of Active Region 8910 obtained simultaneously at 212 and 405 GHz during a large Hα flare, which produced a soft X-ray class X1.1 event. Data were obtained with the new solar submillimeter telescope recently installed at the El Leoncito Observatory to explore this poorly known part of the solar emission spectrum. A small slow submillimeter enhancement (≤300 sfu) was associated to bulk emissions at X-rays, Hα, and microwaves. The event exhibited numerous submillimeter-wave 100-300 ms duration spikes, the larger ones with fluxes on the order of 220 and 500 sfu (±20%) at 212 and 405 GHz, respectively. A dramatic increase in the incidence rate of submillimeter spikes sets in as a new large loop system appears in AR 8910, and X-ray emission increases nearly 1 hr before the large flare. The brightening incidence rate (~20 per minute) correlates well with the large flare light curves at X-rays and Hα. The submillimeter spikes may be associated to microflares, waves, or quakes in flaring active regions.Facultad de Ciencias Astronómicas y Geofísica

    Rapid Submillimeter Brightenings Associated with a Large Solar Flare

    Get PDF
    We present high time resolution observations of Active Region 8910 obtained simultaneously at 212 and 405 GHz during a large Hα flare, which produced a soft X-ray class X1.1 event. Data were obtained with the new solar submillimeter telescope recently installed at the El Leoncito Observatory to explore this poorly known part of the solar emission spectrum. A small slow submillimeter enhancement (≤300 sfu) was associated to bulk emissions at X-rays, Hα, and microwaves. The event exhibited numerous submillimeter-wave 100-300 ms duration spikes, the larger ones with fluxes on the order of 220 and 500 sfu (±20%) at 212 and 405 GHz, respectively. A dramatic increase in the incidence rate of submillimeter spikes sets in as a new large loop system appears in AR 8910, and X-ray emission increases nearly 1 hr before the large flare. The brightening incidence rate (~20 per minute) correlates well with the large flare light curves at X-rays and Hα. The submillimeter spikes may be associated to microflares, waves, or quakes in flaring active regions.Fil: Kaufmann, Pierre. Universidade Presbiteriana Mackenzie; BrasilFil: Raulin, J. P. Universidade Presbiteriana Mackenzie; BrasilFil: Correia, E.. Universidade Presbiteriana Mackenzie; BrasilFil: Costa, J. E. R.. Universidade Presbiteriana Mackenzie; BrasilFil: Giménez de Castro, C. G.. Universidade Presbiteriana Mackenzie; BrasilFil: Silva, A. V. R.. Universidade Presbiteriana Mackenzie; BrasilFil: Levato, Orlando Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "el Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "el Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "el Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "el Leoncito"; ArgentinaFil: Rovira, Marta Graciela. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Fernández Borda, R.. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Bauer, O. H.. Max PlanckInstitut fur extraterrestrische Physik,; Alemani
    • …
    corecore