2,340 research outputs found

    Isobutane/butene alkylation on microporous and mesoporous solid acid catalysts: probing the pore transport effects with liquid and near critical reaction media

    Get PDF
    This is the published version. Copyright 2008 Royal Society of ChemistryThe alkylation of isobutane with 1-butene was investigated on microporous (β-zeolite) and mesoporous (silica supported heteropolyacids) catalysts in a slurry reactor. The reaction was investigated in the range of 25–100 bar and 15–95 °C in liquid phase and in near critical reaction media with either dense CO2 or dense ethane as diluent, partially replacing the excess isobutane. At 75 °C, the selectivity towards trimethylpentanes (TMP) in the liquid phase is 70%+ initially, but decreases with time on all the catalysts investigated. While near-critical reaction mixtures were employed in order to enhance pore diffusion rates, the conversion and selectivity profiles obtained with such mixtures are comparable to those obtained with liquid phase reaction mixtures in both microporous and mesoporous catalysts. This implies that pore diffusion effects play a limited role at higher temperatures (75–95 °C). In contrast, the liquid phase results at sub-ambient temperatures indicate that the catalyst is deactivated before the TMPs diffuse out of the pores, indicating that pore diffusion effects play an important role in the deactivation process at low temperatures. Our results suggest that novel approaches that enhance the pore-diffusion rates of the TMPs at lower temperatures must be pursued

    Silver Nanoparticle Aggregates as Highly Efficient Plasmonic Antennas for Fluorescence Enhancement

    Get PDF
    The enhanced local fields around plasmonic structures can lead to enhancement of the excitation and modification of the emission quantum yield of fluorophores. So far, high enhancement of fluorescence intensity from dye molecules was demonstrated using bow-tie gap antenna made by e-beam lithography. However, the high manufacturing cost and the fact that currently there are no effective ways to place fluorophores only at the gap prevent the use of these structures for enhancing fluorescence-based biochemical assays. We report on the simultaneous modification of fluorescence intensity and lifetime of dye-labeled DNA in the presence of aggregated silver nanoparticles. The nanoparticle aggregates act as efficient plasmonic antennas, leading to more than 2 orders of magnitude enhancement of the average fluorescence. This is comparable to the best-reported fluorescence enhancement for a single molecule but here applies to the average signal detected from all fluorophores in the system. This highlights the remarkable efficiency of this system for surface-enhanced fluorescence. Moreover, we show that the fluorescence intensity enhancement varies with the plasmon resonance position and measure a significant reduction (300×) of the fluorescence lifetime. Both observations are shown to be in agreement with the electromagnetic model of surface-enhanced fluorescence

    Enhancing spectral shifts of plasmon-coupled noble metal nanoparticles for sensing applications

    Get PDF
    Noble metal nanoparticles possess very large scattering cross-sections, which make them useful as tags in biosensing assays with the potential to detect even single binding events. In this study, we investigated the effects of nanoparticle size on the shift in the light scattering spectrum following formation of Au–Au, Ag–Ag or Ag–Au dimers using FDTD simulations. We discuss the use of a color camera to detect these spectral changes for application in a target-induced dimerization sensing assay. Dimerization of Au nanoparticles induced a larger shift in color compared to Ag nanoparticles. Heterodimers composed of 60 nm Ag and 40 nm Au demonstrated an even larger spectral shift and color response compared to the best homodimer pair (80–40 nm Au). The increased spectral shift of the Ag–Au heterodimer was subsequently observed experimentally for the DNA-induced dimerization of nanoparticles, showing that careful selection of nanoparticle size and composition can significantly enhance recognition of nanoparticle dimerization events for use in (color) sensing assays

    Toward efficient modification of large gold nanoparticles with DNA

    Get PDF
    DNA-coated gold nanoparticles are one of the most researched nano-bio hybrid systems. Traditionally their synthesis has been a long and tedious process, involving slow salt addition and long incubation steps. This stems from the fact that both DNA and gold particles are negatively charged, therefore efficient interaction is possible only at high salt concentration. However, unmodified particles are susceptible to aggregation at high salt concentrations. Most of the recent modification methods involve the use of surfactants or other small molecules to stabilize the nanoparticles against aggregation, enabling faster modification. Here we present our result on an alternative route to reach fast modification in low salt conditions, namely, reduction of the charge of DNA. We will discuss both the use of natural DNA under acidic pH conditions, and the use of DNA with a cationic, spermine-based “tail” which is commercially available under the name ZNA. Additionally we introduce a characterization method based on ensemble localized surface plasmon resonance measurement (LSPR) which enabled us to extract the kinetics of DNA absorbance without the need for fluorescent tags. Lastly we show that the same ZNA-based modification protocol can be effectively used for silver nanoparticle modification. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use onl

    On the determination of age and mass functions of stars in young open star clusters from the analysis of their luminosity functions

    Full text link
    Based on the CCD observations of remote young open clusters NGC 2383, NGC 2384, NGC 4103, NGC 4755, NGC 7510 and Hogg 15, we constructed their observed luminosity functions (LFs). The observed LFs are corrected for field star contamination determined with the help of galactic star count model. In the case of Hogg 15 and NGC 2383 we also considered the additional contamination from neighbouring clusters NGC 4609 and NGC 2384 respectively. These corrections provided the realistic pattern of cluster LF in the vicinity of the MS turn on point and at fainter magnitudes, revealed the so called H-feature arising due to transition of the Pre-MS phase to MS, which is dependent on the cluster age. The theoretical LFs were constructed representing a cluster population model with continuous star formation for a short time scale and a power law Initial Mass Function (IMF) and these were fitted to the observed LF. As a result we are able to determine for each cluster a set of parameters, describing cluster population (the age, duration of star formation, IMF slope and percentage of field star contamination). It was found that in spite of the non-monotonic behaviour of observed LFs, cluster IMFs can be described as the power law functions with slopes similar to Salpeter's value. The present MS turn on cluster ages are several times lower than those derived from the fitting of theoretical isochrones to the turn off region of the upper Main Sequences.Comment: 17 pages, 5 figures, To appear in MNRA

    Stress-Crack Separation Relationship for Macrosynthetic, Steel and Hybrid Fiber Reinforced Concrete

    Get PDF
    An experimental evaluation of the crack propaga tion and post-cracking response of macro fiber reinforced concrete in flexure is c onducted. Two types of structur al fibers, hooked end steel fibers and continuousl y embossed macro-synthetic fibers are used in this study. A fiber blend of the two fibers is evaluated for spec ific improvements in the post peak residual load carrying response. At 0.5% volume fraction, both steel and macrosynthetic fiber reinforced concrete exhibits load recovery at large crack opening. The blend of 0.2% macrosynthetic fibers and 0.3% steel fibers shows a significa nt improvement in the immediate post peak load response with a significantly smaller load drop and a constant residual load carrying capacity equal to 80% of the peak load. An analytical formulation to predict fle xure load-displacement behaviour considering a multi-linear stress- crack separation (σ -w) relationship is developed. An inverse analysis is developed for obtaining the multi- linear σ -w relation, from the experimental response. The � -w curves of the steel and macrosynthetic fiber reinforced concrete exhibit a stress recovery after a significant drop with increa sing crack opening. Significant residual load carrying capacity is attained only at large crack separation. The fiber blend exhibits a constant residual stress with increasing crack sepa ration following an initial decrease. The constant residual stress is attained at a small crack separation

    A commercial micropropagation protocol for virupakshi (AAB) banana via apical meristem

    Get PDF
    In vitro micropropagation of banana (Musa spp.) cv.virupakshi (Hillbanana) was studied. Suckers were collected from the germ plasm block of Jain R&D (originally established from the suckers from Palani Hills, Tamil Nadu) during summer. The sucker surface sterilized with 1% NaOCl for 30 min gave 100% survival without any contamination. Apical meristems that were isolated and cultured on MS based media supplemented with benzylaminopurine (BAP) 10.0 mg/l and IAA1.0 mg/l gave higher number of shoots (134.3 shoots/explant) within168 days (24 weeks). Kinetin 2.0 mg/l and NAA0.5 mg/l gave early rooting in just five days with 6.6 roots per plant. Observations were recorded after every four weeks up to six sub-culturing. Acclimatization was done in poly house, followed by shade house under 50% light conditions. The hardened plants when shifted to the field showed luxurious growth. The regenerated micro propagated banana plants were tested for genetic uniformity through 13 inter simple sequence repeat (ISSR) markers recommended by NCS-TCP, DBT. Profiles obtained by all the three ISSR primers namely, 834, 840 and 850, respectively exhibited similar banding patterns, which revealed the existence of genetic uniformity in micro- propagated plants.Keywords: Micropropagation, Virupakshi, hill banana, banana bunchy top viru

    Wave function mapping in graphene quantum dots with soft confinement

    Full text link
    Using low-temperature scanning tunneling spectroscopy, we map the local density of states (LDOS) of graphene quantum dots supported on Ir(111). Due to a band gap in the projected Ir band structure around the graphene K point, the electronic properties of the QDs are dominantly graphene-like. Indeed, we compare the results favorably with tight binding calculations on the honeycomb lattice based on parameters derived from density functional theory. We find that the interaction with the substrate near the edge of the island gradually opens a gap in the Dirac cone, which implies soft-wall confinement. Interestingly, this confinement results in highly symmetric wave functions. Further influences of the substrate are given by the known moir{\'e} potential and a 10% penetration of an Ir surface resonanceComment: 7 pages, 11 figures, DFT calculations directly showing the origin of soft confinment, correct identification of the state penetrating from Ir(111) into graphen

    Magnetic scattering and superconductivity in Nd<SUB>1&#183;86</SUB>Ce<SUB>0&#183;14</SUB>CuO<SUB>4-y</SUB>

    Get PDF
    Nd1&#183;86Ce0.14CuO4-y is superconducting below about 20 K and electrons are considered to be responsible for superconductivity in these materials as in the case of Ln2-x Cex CuO4-y and Ln2-x Thx CuO4-y. Structurally these materials are not very different from the p-type superconductors La2-x Srx CuO4-y . In both these types of superconductors, the parent compounds are antiferromagnetically-ordered insulators. The induction of holes or electrons by substitution destroys magnetic interactions and brings about superconductivity. Peng and coworkers have studied the resistivity variation of both superconducting and nonsuperconducting Nd1&#183;85Ce0&#183;15CuO4-y and have found a decrease in resistivity with temperature, obeying a ln T dependence in the superconducting samples. Such a variation was not seen by them in the nonsuperconducting samples. They ascribe the ln T variation seen in their superconducting samples to arise from magnetic scattering of electrons. To study whether such an effect exists, Nd1&#183;86Ce0&#183;14CuO4-y was subjected to various annealing conditions and the resistivity behaviour is presented here. Our results differ from those of Peng et al
    corecore