41 research outputs found

    Crystal Structure of the PIM2 Kinase in Complex with an Organoruthenium Inhibitor

    Get PDF
    BACKGROUND: The serine/threonine kinase PIM2 is highly expressed in human leukemia and lymphomas and has been shown to positively regulate survival and proliferation of tumor cells. Its diverse ATP site makes PIM2 a promising target for the development of anticancer agents. To date our knowledge of catalytic domain structures of the PIM kinase family is limited to PIM1 which has been extensively studied and which shares about 50% sequence identity with PIM2. PRINCIPAL FINDINGS: Here we determined the crystal structure of PIM2 in complex with an organoruthenium complex (inhibition in sub-nanomolar level). Due to its extraordinary shape complementarity this stable organometallic compound is a highly potent inhibitor of PIM kinases. SIGNIFICANCE: The structure of PIM2 revealed several differences to PIM1 which may be explored further to generate isoform selective inhibitors. It has also demonstrated how an organometallic inhibitor can be adapted to the binding site of protein kinases to generate highly potent inhibitors. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1

    Overcoming ABCG2-mediated drug resistance with imidazo-[1,2-b]-pyridazine-based Pim1 kinase inhibitors

    Get PDF
    Purpose Multidrug efflux pumps such as ABCG2 confer drug resistance to a number of cancer types, leading to poor prognosis and outcome. To date, the strategy of directly inhibiting multidrug efflux pumps in order to overcome drug resistance in cancer has been unsuccessful. An alternative strategy is to target proteins involved in the regulation of multidrug efflux pump activity or expression. Pim1 kinase has been demonstrated to phosphorylate ABCG2, promote its oligomerisation and contribute to its ability to confer drug resistance. Methods In the present manuscript, imidazo-pyridazine-based inhibitors of Pim1 were examined for their ability to overcome ABCG2-mediated drug resistance. Drug efficacy was measured as a cytotoxic response or an effect on transport by ABCG2. Protein expression patterns were assessed using western immuno-blotting. Results The two Pim1 inhibitors increased the potency of flavopiridol, mitoxantrone, topotecan and doxorubicin, specifically in ABCG2-expressing cells. This effect was associated with an increase in the cellular accumulation of [3H]-mitoxantrone, suggesting direct impairment of the transporter. However, prolonged pre-incubation with the studied inhibitors greatly enhanced the effect on mitoxantrone accumulation. The inhibitors caused a significant time-dependent reduction in the expression of ABCG2 in the resistant cells, an effect that would improve drug efficacy. Conclusion Consequently, it appears that the Pim1 inhibitors display a dual-mode effect on ABCG2-expressing cancer cells. This may provide a powerful new strategy in overcoming drug resistance by targeting proteins that regulate expression of efflux pumps

    A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases.

    No full text
    Protein kinases play a pivotal role in cell signaling, and dysregulation of many kinases has been linked to disease development. A large number of kinase inhibitors are therefore currently under investigation in clinical trials, and so far seven inhibitors have been approved as anti-cancer drugs. In addition, kinase inhibitors are widely used as specific probes to study cell signaling, but systematic studies describing selectivity of these reagents across a panel of diverse kinases are largely lacking. Here we evaluated the specificity of 156 validated kinase inhibitors, including inhibitors used in clinical trials, against 60 human Ser/Thr kinases using a thermal stability shift assay. Our analysis revealed many unexpected cross-reactivities for inhibitors thought to be specific for certain targets. We also found that certain combinations of active-site residues in the ATP-binding site correlated with the detected ligand promiscuity and that some kinases are highly sensitive to inhibition using diverse chemotypes, suggesting them as preferred intervention points. Our results uncovered also inhibitor cross-reactivities that may lead to alternate clinical applications. For example, LY333'531, a PKCbeta inhibitor currently in phase III clinical trials, efficiently inhibited PIM1 kinase in our screen, a suggested target for treatment of leukemia. We determined the binding mode of this inhibitor by x-ray crystallography and in addition showed that LY333'531 induced cell death and significantly suppressed growth of leukemic cells from acute myeloid leukemia patients

    Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity.

    No full text
    Much attention has recently been focused on PIM kinases as potential targets for the treatment of hematopoietic malignancies and some solid cancers. Using protein stability shift assays, we identified a family of imidazo[1,2-b]pyridazines to specifically interact with and inhibit PIM kinases with low nanomolar potency. The high-resolution crystal structure of a PIM1 inhibitor complex revealed that imidazo[1,2-b]pyridazines surprisingly interact with the NH(2)-terminal lobe helix alphaC rather than with the kinase hinge region. Thus, the identified inhibitors are ATP competitive but not ATP mimetic compounds, explaining their enhanced selectivity with respect to conventional type I kinase inhibitors. One of the identified imidazo[1,2-b]pyridazines (K00135) was further tested in several hematopoietic cellular systems. First, K00135 dose-dependently impaired survival of murine Ba/F3 cells that have been rendered cytokine independent by overexpression of human PIMs. Second, K00135 impaired survival and clonogenic growth of a panel of human acute leukemia cells. Third, exposure of K00135 significantly suppressed in vitro growth of leukemic blasts from five acute myelogenous leukemia patients but not of normal umbilical cord blood mononuclear cells. In vitro kinase assays and immunoblotting using lysates from human MV4;11 leukemic cells showed inhibition of phosphorylation of known PIM downstream targets, such as BAD and eukaryotic translation initiation factor 4E-binding protein 1, by K00135. Taken together, we report a family of small molecules that selectively interact and block PIM kinases and could serve as a lead to develop new targeted antileukemic therapeutics

    The anti-invasive role of novel synthesized pyridazine hydrazide appended phenoxy acetic acid against neoplastic development targeting matrix metallo proteases

    No full text
    Neoplastic metastasis is a major process where tumor cells migrate from the primary tumor and colonize at other parts of our body to form secondary tumor. Cancer incidences are rising and novel anti-neoplastic compounds with new mechanism of actions are essential for preventing cancer related deaths. In the current examination, a novel series of pyridazine analogues 6a-l was synthesized and evaluated against metastatic neoplastic cells. Experimental data postulated compound 6j has potential cytotoxic efficacy with prolonged activity against various cancer cells, including A549, HepG2, A498, CaSki and SiHa cells. Moreover, compound 6j arrests the A549 migration and invasions markedly by counteracting matrix metalloproteinase (MMP)-2 and MMP-9 expressions. Also, compound 6j proved its potentiality against Dalton’s solid lymphoma progression in-vivo by abridging MVD and MMP expressions. Compound 6j interacts with MMP-2 and MMP-9 by H- bond in-silico, thereby down regulates the MMPs action in tumourigenesis. Altogether, we concluded that compound 6j down regulates MMP-2 and MMP-9 and thereby impairs metastatic cancer cell migration and invasions which can be translated into a potent anti-neoplastic agent

    Loss of pim1 imposes a hyperadhesive phenotype on endothelial cells

    Full text link
    Background: PIM1 is a constitutively active serine-threonine kinase regulating cell survival and proliferation. Increased PIM1 expression has been correlated with cancer metastasis by facilitating migration and anti-adhesion. Endothelial cells play a pivotal role in these processes by contributing a barrier to the blood stream. Here, we investigated whether PIM1 regulates mouse aortic endothelial cell (MAEC) monolayer integrity. Methods: Pim1-/-MAEC were isolated from Pim1 knockout mice and used in trypsinization-, wound closure assays, electrical cell-substrate sensing, immunostaining, cDNA transfection and as RNA source for microarray analysis. Results: Pim1-/-MAEC displayed decreased migration, slowed cell detachment and increased electrical resistance across the endothelial monolayer. Reintroduction of Pim1- cDNA into Pim1-/-MAEC significantly restored wildtype adhesive characteristics. Pim1-/--MAEC displayed enhanced focal adhesion and adherens junction structures containing vinculin and β-catenin, respectively. Junctional molecules such as Cadherin 13 and matrix components such as Collagen 6a3 were highly upregulated in Pim1-/- cells. Intriguingly, extracellular matrix deposited by Pim1-/- cells alone was sufficient to induce the hyperadhesive phenotype in wildtype endothelial cells. Conclusion: Loss of Pim1 induces a strong adhesive phenotype by enhancing endothelial cell-cell and cell-matrix adhesion by the deposition of a specific extracellular matrix. Targeting PIM1 function therefore might be important to promote endothelial barrier integrity
    corecore