274 research outputs found

    Intrinsic Variability of GM Density Maps and its Implications to VBM Studies

    Get PDF
    Voxel Based Morphometry (VBM) has been gaining popularity as an unbiased objective neuroimaging technique for identifying structural changes in the brain. VBM involves a voxel-wise comparison of the local concentration of gray matter (GM) in whole brain MRI scans. Although it was originally devised to examine structural abnormalities in patients, the technique has also been used successfully with healthy subjects. Recent VBM studies have investigated the impact of learning and practice on brain structure. Unlike certain medical conditions that may cause dramatic structural changes, effects observed in healthy subjects are expected to be small, therefore imposing stringent requirements on the sensitivity of the technique. The success of such studies depends on high quality imaging and subsequent accurate segmentation of GM. Segmentation results are inevitably affected by the presence of other tissues with similar intensity (dura matter, large blood vessels etc.), imaging artifacts (blood flow and eye movement, susceptibility artifacts etc.). Since these factors are non-homogeneous throughout the brain, segmentation is highly reproducible in some areas of cortex while it is less reliable in other areas. This non-homogeneity makes VBM sensitivity selective to areas where segmentation happens to be more robust. We studied the intrinsic variability of GM density maps derived from scans obtained under identical conditions, i.e. the same subject, scanner and protocol. The data was acquired on GE Signa 1.5, (SPGR) and Philips Achieva 3T (MPRAGE) scanners. A distinction should be made between variability observed among scans acquired within the same session and that observed for different sessions, since the latter will also be affected by such factors as different head positioning and the somewhat altered state of both the subject and the scanner. The figure summarizes within-session variability of GM density maps observed using the GE Signa. Six SPGR scans were obtained in each of four subjects in one session, and the scan sessions were repeated nine weeks later as a part of longitudinal VBM study. Variability for one subject/session was estimated by computing the standard deviation of six GM density maps obtained using SPM5 unified segmentation/normalization framework and VBM5 toolkit. These were normalized by applying a transformation estimated as follows: all six scans were coregistered and averaged to obtain a low noise structural image volume and a single normalization transformation was estimated from it. Eight variability maps in standard (MNI) space corresponding to session/subject pairs were averaged to produce a map shown in the Figure. The color coded variability map is superimposed onto the GM probability density map (only the right hemisphere is shown in the figure). We will present the findings of within and between session variability analyses derived from our data and from data obtained in other laboratories, and discuss implications and methodological considerations for planning and interpreting VBM studies of GM density. Preliminary results indicate that although different scanners and protocols produce varying patterns of GM variability maps, certain areas (e.g. tip of the temporal lobe) may consistently show increased variability

    Amygdala circuitry mediating reversible and bidirectional control of anxiety

    Get PDF
    Anxiety—a sustained state of heightened apprehension in the absence of immediate threat—becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)—achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA—exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA–CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease

    Chagasic Thymic Atrophy Does Not Affect Negative Selection but Results in the Export of Activated CD4+CD8+ T Cells in Severe Forms of Human Disease

    Get PDF
    Extrathymic CD4+CD8+ double-positive (DP) T cells are increased in some pathophysiological conditions, including infectious diseases. In the murine model of Chagas disease, it has been shown that the protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironment and the lymphoid compartment. In the acute phase, this results in a severe atrophy of the organ and early release of DP cells into the periphery. To date, the effect of the changes promoted by the parasite infection on thymic central tolerance has remained elusive. Herein we show that the intrathymic key elements that are necessary to promote the negative selection of thymocytes undergoing maturation during the thymopoiesis remains functional during the acute chagasic thymic atrophy. Intrathymic expression of the autoimmune regulator factor (Aire) and tissue-restricted antigen (TRA) genes is normal. In addition, the expression of the proapoptotic Bim protein in thymocytes was not changed, revealing that the parasite infection-induced thymus atrophy has no effect on these marker genes necessary to promote clonal deletion of T cells. In a chicken egg ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic system, the administration of OVA peptide into infected mice with thymic atrophy promoted OVA-specific thymocyte apoptosis, further indicating normal negative selection process during the infection. Yet, although the intrathymic checkpoints necessary for thymic negative selection are present in the acute phase of Chagas disease, we found that the DP cells released into the periphery acquire an activated phenotype similar to what is described for activated effector or memory single-positive T cells. Most interestingly, we also demonstrate that increased percentages of peripheral blood subset of DP cells exhibiting an activated HLA-DR+ phenotype are associated with severe cardiac forms of human chronic Chagas disease. These cells may contribute to the immunopathological events seen in the Chagas disease

    Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas

    Get PDF
    Familial Non-Medullary Thyroid Carcinoma (fNMTC) represents 3–7% of all thyroid tumours and is associated with some of the highest familial risks among all cancers, with an inheritance pattern compatible with an autosomal dominant model with reduced penetrance. We previously mapped a predisposing locus, TCO (Thyroid tumour with Cell Oxyphilia) on chromosome 19p13.2, for a particular form of thyroid tumour characterised by cells with an abnormal proliferation of mitochondria (oxyphilic or oncocytic cells). In the present work, we report the systematic screening of 14 candidate genes mapping to the region of linkage in affected TCO members, that led us to identify two novel variants respectively in exon 9 and exon 13 of TIMM44, a mitochondrial inner membrane translocase for the import in the mitochondria of nuclear-encoded proteins. These variants were co-segregating with the TCO phenotype, were not present in a large group of controls and were predicted to negatively affect the protein (exon 9 change) or the transcript (exon 13 change). Functional analysis was performed in vitro for both changes and although no dramatic loss of function effects were identified for the mutant alleles, subtler effects might still be present that could alter Timm44 function and thus promote oncocytic tumour development. Thus we suggest that TIMM44 should be considered for further studies in independent samples of affected individuals with TCO

    Effectiveness of the Strengthening Families Programme 10–14 in Poland for the prevention of alcohol and drug misuse: protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alcohol and other drug use and misuse is a significant problem amongst Polish youth. The SFP10-14 is a family-based prevention intervention that has positive results in US trials, but questions remain about the generalizability of these results to other countries and settings.</p> <p>Methods/Design</p> <p>A cluster randomized controlled trial in community settings across Poland. Communities will be randomized to a SFP10-14 trial arm or to a control arm. Recruitment and consent of families, and delivery of the SFP10-14, will be undertaken by community workers. The primary outcomes are alcohol and other drug use and misuse. Secondary (or intermediate) outcomes include parenting practices, parent–child relations, and child problem behaviour. Interview-based questionnaires will be administered at baseline, 12 and 24 months.</p> <p>Discussion</p> <p>The trial will provide information about the effectiveness of the SFP10-14 in Poland.</p> <p>Trial registration</p> <p>International Standard Randomised Controlled Trial Number: ISRCTN89673828</p

    Capsaicin-Induced Changes in LTP in the Lateral Amygdala Are Mediated by TRPV1

    Get PDF
    The transient receptor potential vanilloid type 1 (TRPV1) channel is a well recognized polymodal signal detector that is activated by painful stimuli such as capsaicin. Here, we show that TRPV1 is expressed in the lateral nucleus of the amygdala (LA). Despite the fact that the central amygdala displays the highest neuronal density, the highest density of TRPV1 labeled neurons was found within the nuclei of the basolateral complex of the amygdala. Capsaicin specifically changed the magnitude of long-term potentiation (LTP) in the LA in brain slices of mice depending on the anesthetic (ether, isoflurane) used before euthanasia. After ether anesthesia, capsaicin had a suppressive effect on LA-LTP both in patch clamp and in extracellular recordings. The capsaicin-induced reduction of LTP was completely blocked by the nitric oxide synthase (NOS) inhibitor L-NAME and was absent in neuronal NOS as well as in TRPV1 deficient mice. The specific antagonist of cannabinoid receptor type 1 (CB1), AM 251, was also able to reduce the inhibitory effect of capsaicin on LA-LTP, suggesting that stimulation of TRPV1 provokes the generation of anandamide in the brain which seems to inhibit NO synthesis. After isoflurane anesthesia before euthanasia capsaicin caused a TRPV1-mediated increase in the magnitude of LA-LTP. Therefore, our results also indicate that the appropriate choice of the anesthetics used is an important consideration when brain plasticity and the action of endovanilloids will be evaluated. In summary, our results demonstrate that TRPV1 may be involved in the amygdala control of learning mechanisms

    A Fear-Inducing Odor Alters PER2 and c-Fos Expression in Brain Regions Involved in Fear Memory

    Get PDF
    Evidence demonstrates that rodents learn to associate a foot shock with time of day, indicating the formation of a fear related time-stamp memory, even in the absence of a functioning SCN. In addition, mice acquire and retain fear memory better during the early day compared to the early night. This type of memory may be regulated by circadian pacemakers outside of the SCN. As a first step in testing the hypothesis that clock genes are involved in the formation of a time-stamp fear memory, we exposed one group of mice to fox feces derived odor (TMT) at ZT 0 and one group at ZT 12 for 4 successive days. A separate group with no exposure to TMT was also included as a control. Animals were sacrificed one day after the last exposure to TMT, and PER2 and c-Fos protein were quantified in the SCN, amygdala, hippocampus, and piriform cortex. Exposure to TMT had a strong effect at ZT 0, decreasing PER2 expression at this time point in most regions except the SCN, and reversing the normal rhythm of PER2 expression in the amygdala and piriform cortex. These changes were accompanied by increased c-Fos expression at ZT0. In contrast, exposure to TMT at ZT 12 abolished the rhythm of PER2 expression in the amygdala. In addition, increased c-Fos expression at ZT 12 was only detected in the central nucleus of the amygdala in the TMT12 group. TMT exposure at either time point did not affect PER2 or c-Fos in the SCN, indicating that under a light-dark cycle, the SCN rhythm is stable in the presence of repeated exposure to a fear-inducing stimulus. Taken together, these results indicate that entrainment to a fear-inducing stimulus leads to changes in PER2 and c-Fos expression that are detected 24 hours following the last exposure to TMT, indicating entrainment of endogenous oscillators in these regions. The observed effects on PER2 expression and c-Fos were stronger during the early day than during the early night, possibly to prepare appropriate systems at ZT 0 to respond to a fear-inducing stimulus
    corecore