52 research outputs found

    White Mirror: Leaking Sensitive Information from Interactive Netflix Movies using Encrypted Traffic Analysis

    Full text link
    Privacy leaks from Netflix videos/movies is well researched. Current state-of-the-art works have been able to obtain coarse-grained information such as the genre and the title of videos by passive observation of encrypted traffic. However, leakage of fine-grained information from encrypted traffic has not been studied so far. Such information can be used to build behavioural profiles of viewers. On 28th December 2018, Netflix released the first mainstream interactive movie called 'Black Mirror: Bandersnatch'. In this work, we use this movie as a case-study to show for the first time that fine-grained information (i.e., choices made by users) can be revealed from encrypted traffic. We use the state information exchanged between the viewer's browser and Netflix as the side-channel. To evaluate our proposed technique, we built the first interactive video traffic dataset of 100 viewers; which we will be releasing. Preliminary results indicate that the choices made by a user can be revealed 96% of the time in the worst case.Comment: 2 pages, 2 figures, 1 tabl

    Performance of the tsunami forecast system for the Indian Ocean

    Get PDF
    The Indian Tsunami Early Warning System (ITEWS) at the Indian National Centre for Ocean Information Services, Hyderabad, is responsible for issuing tsunami bulletins in India. The tsunami centre oper- ates on a 24×7 basis and monitors seismological sta- tions, bottom pressure recorders and tidal stations throughout the Indian Ocean to evaluate potentially tsunamigenic earthquakes and disseminating tsunami bulletins. The end-to-end capabilities of this warning system have been well proven during all the tsunami- genic earthquakes that occurred since September 2007. Comparison of the earthquake parameters estimated by ITEWS with other international seismological agencies suggests that the system is performing well and has achieved the target set up by the Inter- governmental Oceanographic Commission

    Non-linear microwave impedance of short and long Josephson Junctions

    Full text link
    The non-linear dependence on applied acac field (bωb_{\omega}) or current (iω% i_{\omega}) of the microwave (ac) impedance Rω+iXωR_{\omega}+iX_{\omega} of both short and long Josephson junctions is calculated under a variety of excitation conditions. The dependence on the junction width is studied, for both field symmetric (current anti-symmetric) and field anti-symmetric (current symmetric) excitation configurations.The resistance shows step-like features every time a fluxon (soliton) enters the junction, with a corresponding phase slip seen in the reactance. For finite widths the interference of fluxons leads to some interesting effects which are described. Many of these calculated results are observed in microwave impedance measurements on intrinsic and fabricated Josephson junctions in the high temperature superconductors, and new effects are suggested. When a % dc field (bdcb_{dc}) or current (idci_{dc}) is applied, interesting phase locking effects are observed in the ac impedance ZωZ_{\omega}. In particular an almost periodic dependence on the dc bias is seen similar to that observed in microwave experiments at very low dc field bias. These results are generic to all systems with a cos(ϕ)\cos (\phi) potential in the overdamped limit and subjected to an ac drive.Comment: 7 pages, 11 figure

    Three novel rice genes closely related to the <em>Arabidopsis</em> <sub>9<em>IRX</em></sub>, <sub>9<em>IRXL</em></sub>, and<sub>14<em> IRX</em></sub> genes and their roles in xylan biosynthesis

    Get PDF
    Xylan is the second most abundant polysaccharide on Earth, and represents a major component of both dicot wood and the cell walls of grasses. Much knowledge has been gained from studies of xylan biosynthesis in the model plant, Arabidopsis. In particular, the irregular xylem (irx) mutants, named for their collapsed xylem cells, have been essential in gaining a greater understanding of the genes involved in xylan biosynthesis. In contrast, xylan biosynthesis in grass cell walls is poorly understood. We identified three rice genes Os07g49370 (OsIRX9), Os01g48440 (OsIRX9L), and Os06g47340 (OsIRX14), from glycosyltransferase family 43 as putative orthologs to the putative β-1,4-xylan backbone elongating Arabidopsis IRX9, IRX9L, and IRX14 genes, respectively. We demonstrate that the over-expression of the closely related rice genes, in full or partly complement the two well-characterized Arabidopsis irregular xylem (irx) mutants: irx9 and irx14. Complementation was assessed by measuring dwarfed phenotypes, irregular xylem cells in stem cross sections, xylose content of stems, xylosyltransferase (XylT) activity of stems, and stem strength. The expression of OsIRX9 in the irx9 mutant resulted in XylT activity of stems that was over double that of wild type plants, and the stem strength of this line increased to 124% above that of wild type. Taken together, our results suggest that OsIRX9/OsIRX9L, and OsIRX14, have similar functions to the Arabidopsis IRX9 and IRX14 genes, respectively. Furthermore, our expression data indicate that OsIRX9 and OsIRX9L may function in building the xylan backbone in the secondary and primary cell walls, respectively. Our results provide insight into xylan biosynthesis in rice and how expression of a xylan synthesis gene may be modified to increase stem strength

    3640 Unique EST Clusters from the Medaka Testis and Their Potential Use for Identifying Conserved Testicular Gene Expression in Fish and Mammals

    Get PDF
    BACKGROUND: The fish medaka is the first vertebrate capable of full spermatogenesis in vitro from self-renewing spermatogonial stem cells to motile test-tube sperm. Precise staging and molecular dissection of this process has been hampered by the lack of suitable molecular markers. METHODOLOGY AND PRINCIPAL FINDINGS: We have generated a normalized medaka testis cDNA library and obtained 7040 high quality sequences representing 3641 unique gene clusters. Among these, 1197 unique clusters are homologous to known genes, and 2444 appear to be novel genes. Ontology analysis shows that the 1197 gene products are implicated in diverse molecular and cellular processes. These genes include markers for all major types of testicular somatic and germ cells. Furthermore, markers were identified for major spermatogenic stages ranging from spermatogonial stem cell self-renewal to meiosis entry, progression and completion. Intriguingly, the medaka testis expresses at least 13 homologs of the 33 mouse X-chromosomal genes that are enriched in the testis. More importantly, we show that key components of several signaling pathways known to be important for testicular function in mammals are well represented in the medaka testicular EST collection. CONCLUSIONS/SIGNIFICANCE: Medaka exhibits a considerable similarity in testicular gene expression to mammals. The medaka testicular EST collection we obtained has wide range coverage and will not only consolidate our knowledge on the comparative analysis of known genes' functions in the testis but also provide a rich resource to dissect molecular events and mechanism of spermatogenesis in vivo and in vitro in medaka as an excellent vertebrate model

    Unlocking the Transcriptomes of Two Carcinogenic Parasites, Clonorchis sinensis and Opisthorchis viverrini

    Get PDF
    The two parasitic trematodes, Clonorchis sinensis and Opisthorchis viverrini, have a major impact on the health of tens of millions of humans throughout Asia. The greatest impact is through the malignant cancer ( = cholangiocarcinoma) that these parasites induce in chronically infected people. Therefore, both C. sinensis and O. viverrini have been classified by the World Health Organization (WHO) as Group 1 carcinogens. Despite their impact, little is known about these parasites and their interplay with the host at the molecular level. Recent advances in genomics and bioinformatics provide unique opportunities to gain improved insights into the biology of parasites as well as their relationships with their hosts at the molecular level. The present study elucidates the transcriptomes of C. sinensis and O. viverrini using a platform based on next-generation (high throughput) sequencing and advanced in silico analyses. From 500,000 sequences, >50,000 sequences were assembled for each species and categorized as biologically relevant based on homology searches, gene ontology and/or pathway mapping. The results of the present study could assist in defining molecules that are essential for the development, reproduction and survival of liver flukes and/or that are linked to the development of cholangiocarcinoma. This study also lays a foundation for future genomic and proteomic research of C. sinensis and O. viverrini and the cancers that they are known to induce, as well as novel intervention strategies

    Millimeter-Wave Nondiffracting Circular Airy OAM Beams

    No full text

    Talbot Effect at the Dirac-Like Cone in Kagome Lattice Microwave Photonic Crystal

    No full text
    corecore