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INTRODUCTION

Xylan is the second most abundant polysaccharide on Earth, and represents a major com-
ponent of both dicot wood and the cell walls of grasses. Much knowledge has been gained
from studies of xylan biosynthesis in the model plant, Arabidopsis. In particular, the irregular
xylem (irx) mutants, named for their collapsed xylem cells, have been essential in gaining a
greater understanding of the genes involved in xylan biosynthesis. In contrast, xylan biosyn-
thesis in grass cell walls is poorly understood. We identified three rice genes Os07g49370
(OsIRX9), Os01948440 (OsIRX9L), and Os06947340 (OsIRX14), from glycosyltransferase
family 43 as putative orthologs to the putative B-1,4-xylan backbone elongating Arabidopsis
IRX9, IRXI9L, and IRX14 genes, respectively. We demonstrate that the overexpression of
the closely related rice genes, in full or partly complement the two well-characterized Ara-
bidopsis irregular xylem (irx) mutants: irx9 and irx74. Complementation was assessed by
measuring dwarfed phenotypes, irregular xylem cells in stem cross sections, xylose con-
tent of stems, xylosyltransferase (XyIT) activity of stems, and stem strength.The expression
of Os/RX9 in the irx9 mutant resulted in XyIT activity of stems that was over double that
of wild type plants, and the stem strength of this line increased to 124% above that of
wild type. Taken together, our results suggest that Os/IRX9/0OsIRX9L, and OsIRX14, have
similar functions to the Arabidopsis IRX9 and IRX14 genes, respectively. Furthermore, our
expression data indicate that Os/RX9 and Os/RX9L may function in building the xylan back-
bone in the secondary and primary cell walls, respectively. Our results provide insight into
xylan biosynthesis in rice and how expression of a xylan synthesis gene may be modified
to increase stem strength.

Keywords: xylan, irregular xylan mutants, cell walls, type Il cell walls, xylosyltransferase

Wyman, 2004; Carroll and Somerville, 2009; Klein-Marcuschamer

Plant cells are surrounded by strong walls composed largely of cel-
lulose, matrix polysaccharides, and — in some cell types — lignin.
Hemicelluloses and pectin are polysaccharides of the cell wall
matrix. Xylans are by far the most abundant matrix polysaccha-
rides of dicot wood and grass cell walls, making it the second
most abundant polysaccharide on Earth (Scheller and Ulvskov,
2010). Xylans are a major component of the dietary fiber in cereal
grains, and therefore represent a large portion of the human and
livestock diet (Ebringerova and Heinze, 2000). The chemical com-
position of xylans affects the properties of bread making and beer
malting (Vinkx and Delcour, 1996). Xylans are also a target for
the improvement of feedstocks for the generation of cellulosic
biofuels, a currently expensive and inefficient process (Yang and

etal, 2011). Xylans, cellulose, and lignin are important structural
components of the plant cell wall. While the down-regulation
of the synthesis of xylans (Lee et al., 2011), cellulose (Kokubo
et al., 1989, 1991), and lignin (Vanholme et al., 2008) have been
shown to decrease the strength of the plant, it is unknown whether
the upregulation of secondary wall synthesis genes could increase
plant strength. Thus, a greater understanding of xylan biosynthe-
sis may contribute to agriculture, as well as the food and energy
industries.

Xylans are structurally diverse, with the substituents on
the xylan polymer backbone varying by taxonomy. Xylans
of embryophytes have a backbone consisting of f-1,4-linked
xylosyl residues. Dicot xylans are commonly substituted with
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a-(1— 2)-linked glucuronosyl and 4-O-methyl glucuronosyl
residues (Ebringerova and Heinze, 2000). Xylans in birch, spruce,
and Arabidopsis have been found to contain the reducing end
oligosaccharide B-p-Xylp-(1 — 4)-pB-p-Xylp-(1 — 3)-a-L-Rhap-
(1 - 2)-a-p-GalpA-(1 — 4)-p-Xylp (Johansson and Samuelson,
1977; Andersson et al., 1983; Penia et al., 2007) which, interestingly,
has not been found in the xylan of grasses. Grass xylans have very
few glucuronosyl residues, but are mostly substituted with a-1,2
and a-1,3 arabinosyl residues. Grass xylans are also known to con-
tain other unique chain decorations, including the disaccharide,
B-Xylp-(1 — 2)-a-Araf-(1 — 3) (Wende and Fry, 1997; Chiniquy
et al., 2012). Another unique feature of grass xylans is the esteri-
fication of some arabinosyl residues with ferulic and p-coumaric
acid.

The majority of genes involved in grass xylan biosynthesis
are unknown, despite significant efforts over the past decade to
identify the genes involved. In Arabidopsis, the irregular xylem
(irx) mutants, named for their collapsed xylem vessels due to
secondary cell wall deficiencies, have been useful in elucidating
the mechanisms of xylan biosynthesis (Turner and Somerville,
1997). IRX9/IRX9L and IRX14/IRX14L from glycosyltransferase
(GT) family 43, and IRX10/IRX10L from GT47 and OsIRX10 are
thought to be responsible for elongation of the xylan backbone
(Brown et al., 2007, 2009; Geisler-Lee et al., 2007; Persson et al.,
2007; Cantarel et al., 2009; Wu et al., 2009; Faik, 2010; Chen et al.,
2012). IRX7 (FRAS8)/IRX7L (F8H) (from GT47), IRX8 (GAUT12)
(from GT8), and PARVUS (from GT8) may be responsible for
synthesizing the oligosaccharide found at the reducing end of
some dicot and conifer xylans (Brown et al., 2007; Lee et al.,
2007b; Liepman et al., 2010; Scheller and Ulvskov, 2010). GXMT1
is a methyltransferase that specifically methylates glucuronosyl
residues in xylan to 4-O-methyl-glucuronic acid (Urbanowicz
et al., 2012). Two other members of the same protein family, the
Arabidopsis IRX15/IRX15L are essential for xylan deposition in
the secondary cell wall (Brown et al., 2011; Jensen et al., 2011) but
it is not clear if they are also methyltransferases and what their
substrate might be. GUX1, GUX2, and GUX4 (from GT8) add
glucuronosyl substitutions to the xylan backbone in Arabidopsis
(Mortimer et al., 2010; Oikawa et al., 2010; Rennie et al., 2012).
Recently the rice XAT genes from GT61 were characterized as
encoding proteins adding the a-(1 — 3)-arabinosyl substitutions
onto the xylan chain (Anders et al., 2012), and rice XAX1, also
from GT61, was shown to be responsible for adding the xylose
residues in Xylp-(1 — 2)-a-Araf-(1 — 3) substitutions (Chiniquy
etal., 2012).

Even though there are clear differences in xylan structure
between grasses and dicots, it is unknown whether xylan syn-
thesis genes are functionally conserved between Arabidopsis and
rice. Complementation studies, which involve the heterologous
expression of a putative xylan synthesis gene in well-characterized
xylan mutants have increased our understanding of xylan synthe-
sis in other plant species. Complementation studies indicated that
the poplar GT43B gene may be a functionally equivalent ortholog
of the Arabidopsis IRX9 gene (Zhou et al., 2007) and the poplar
GT43C/D genes are functionally equivalent orthologs to Arabidop-
sis IRX14 (Lee et al., 2011). The Poplar GT47C and GTS8E/F are
thought to be functionally equivalent orthologs to the Arabidopsis

FRA8 and PARVUS, respectively (Zhou et al., 2006; Lee et al,,
2009).

While the studies mentioned above suggest that IRX9/IRX9L
and IRX14/IRX14L are all involved in and essential for synthesis
of the xylan backbone in Arabidopsis and that IRX10/IRX10L are
essential in rice and Arabidopsis, it is unclear why three different
GTs would be required to make a single transfer reaction, and it
is also unclear if xylan biosynthesis would require orthologs of
all these proteins in all plant species. A transcriptomic study of
psyllium seeds, which are exceptionally rich in xylan, showed high
abundance of a transcript corresponding to IRX10, but transcripts
of genes homologous to IRX9 and IRX 14 were not detected (Jensen
et al., 2011). This would suggest that in this dicot plant, IRX9 and
IRX14 might not be required for synthesis of seed xylan. Likewise,
a highly active enzyme preparation from wheat capable of syn-
thesizing xylan was purified and immunoprecipitated (Zeng et al.,
2010). The enzyme preparation contained orthologs of IRX10 and
IRX14, but not of IRX9.

To gain a greater understanding of xylan synthesis in rice, we
conducted a complementation study of three rice genes that are
closely related to the IRX9, IRX9L, and IRX14 Arabidopsis genes.
Here, we demonstrate that the over-expression of Os07g49370
(OsIRX9), 0s01g48440 (OsIRX9L), and Os06g47340 (OsIRX14),
complemented to varying levels the dwarfed phenotype, irregu-
lar xylem cells, decreased xylose, xylosyltransferase (XylT) activity,
stem strength, and xylan chain length of the respective Arabidopsis
irregular xylem mutants, irx9 and irx14. We also show that OsIRX9L
was more highly expressed in many developing tissues in wild type
rice, with OsIRX9 expression almost entirely in tissues rich in sec-
ondary cell walls —indicating a potential functional differentiation
between IRX9 and IRX9L genes. In addition, we show that the
over-expression of OsIRX9 in irx9 increased the stem strength to
above that of wild type plants. Our results provide insight into
xylan biosynthesis in rice and demonstrate that expression of a
xylan synthesis gene may be modified to increase stem strength.

RESULTS

PHENOTYPIC CHARACTERIZATION OF RICE Os/RX9, OsIRX9L, AND
0sIRX14 OVER-EXPRESSION LINES IN THE irx9 AND irx 14
ARABIDOPSIS MUTANTS

To determine the functional equivalence of Os07g49370,
0s501g48440, and Os06¢g47340, to the respective closely related
Arabidopsis genes (Figure 1 and Figure Al in Appendix), IRX9,
IRX9L, and IRX14, respectively, we over-expressed the three rice
genes, hereafter referred to as OsIRX9, OsIRX9L, and OsIRX14
in the Arabidopsis irx9 and irx14 mutant plants. Expression lev-
els were evaluated in 10 independently transformed lines using
rice gene specific primers. Two lines from each transformant with
the highest expression were selected for further characterization
(Figure 2C). Complementation of the Arabidopsis irx9 mutant
with rice OsIRX9 (irx9+ OsIRX9) resulted in phenotypes similar
to the Columbia (Col-0) wild type control at 5-weeks post germi-
nation. Microscopy of stem cross sections indicated the absence of
irregular xylem cells (Figures 2A,B). Similarly, complementation
of OsIRX14 in the Arabidopsis irx14 mutant (irxI14+ OsIRX14)
resulted in a similar plant size and regularity of the xylem cells to
that of the wild type control plant. The irx9+ OsIRX9L appeared
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FIGURE 1 | Phylogenetic tree of glycosyltransferase family 43

including genes from rice, Arabidopsis, Poplar, Selaginella, and
Physcomitrella genomes. The evolutionary relationships were

inferred using the NeighborJoining method. The optimal tree with the
sum of branch length = 16.96637902 is shown. The tree is drawn to

evolutionary distances used to infer the phylogenetic tree. The
scale with branch lengths in the same units as those of the

evolutionary distances were computed using the JTT matrix-based

method and are in the units of the number of amino acid substitutions

per site. The rate variation among sites was modeled with a gamma
distribution (shape parameter =1). Evolutionary analyses were

conducted in MEGAb.

to have an intermediate level of complementation between wild

type and irx9 plants both in terms of plant height and xylem vessel

appearance (Figures 2A,B).

BIOCHEMICAL ANALYSIS AND STEM STRENGTH MEASUREMENTS
The irx9 and irx14 mutant plants have stems with a decreased

xylose content and residual xylan with a significantly lower
www.frontiersin.org
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FIGURE 2 | Restoration of (A) plant size and (B) irregular xylem vessel
phenotype in irx9 and irx14 mutant plants by over-expression of rice
genes. Stem cross sections were stained with toluidine blue. Phloem (ph)
and xylem vessels (arrows) are indicated. Scale bar =50 um. (C) Relative

irx9+0sIRX9

expression of each rice gene in the complemented Arabidopsis lines. The
relative expression levels were examined for 10 lines in each construct. Two
lines (shown) with the highest expression for each construct were chosen for
further analysis. Error bars represent SD of three biological replicates.

molecular mass (Brown et al., 2007; Pefia et al., 2007). To deter-
mine the level of complementation in terms of xylose content
in the rice over-expression lines, we prepared cell wall alco-
hol insoluble residue (AIR), enzymatically removed starch, and
acid hydrolyzed the non-cellulosic polysaccharides. The released
monosaccharides were separated and quantified by high per-
formance anion exchange chromatography with electrochemical
detection (HPAEC-PAD). The irx9 + OsIRX9 and irx9 + OsIRX9L
xylose contents in stems recovered to those of wild types
(Figure 3A) (both with a p value of less than 0.001 using a ¢
test). The irx14+ OsIRX14 xylose content reached an intermedi-
ate level of complementation but was significantly above that of
irx14 (Figure 3B) (¢ test: p < 0.001). To determine if the increase
in xylose content also correlated with the length of the xylan chains
being restored, we used size-exclusion chromatography (SEC) to
measure the size distribution of the xylans in the mutants, wild
type, and complemented lines (Figure 4). We found that the
irx9+ OsIRXIL line reached an intermediate level of complemen-
tation in terms of xylan chain length, with the irx9+ OsIRX9 line
having a chain length comparable to wild type. Interestingly, the

irx14+ OsIRX14 xylan chain length was comparable to the irx14
mutant.

The decrease in xylan in the secondary walls of the irx9 and
irxI4 mutant plants results in a lower stem strength. To deter-
mine if the rice genes complemented the stem strength of the
Arabidopsis mutants, we measured the stem strength in the rice
over-expression plants and found that one irx9+ OsIRX9 line 14
demonstrated a stem strength that was 124% that of wild type
(Figure 3C) (t test: p < 0.05). The data from multiple lines from
each construct are shown — and the irx9+ OsIRX9 line 16 had a
stem strength that was 87% that of wild type, but this still is a
significant improvement in strength considering that the uncom-
plemented irx9 mutant had a stem strength of 38% that of wild
type. The two irx9 4+ OsIRX9L lines also showed improvement in
stem strength that was 94 and 46% that of wild type — the first line
complementing far better. The irx14 mutant stems had a break-
ing strength that was slightly higher than irx9 at 43% that of wild
type (Figure 3C). The two complemented irx14+ OsIRX14 lines
demonstrated a stem strength that was 64 and 70% that of wild
type (Figure 3D) (¢ test: p < 0.01).
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FIGURE 3 | Biochemical and mechanical strength analyses of OsIRX14 genes. Error bars represent SD with at least eight biological
5-week-old stems in complemented plants. Cell wall composition replicates. (E) Restoration in xylosyltransferase activity of irx9 and irx14
analysis shows restoration of xylose deficiency by overexpression of (A) mutant plants by over-expression of rice genes. The two OsIRX9 lines had
rice Os/RX9 and OsIRXIL genes. Error bars represent SD with at least 10 xylosyltransferase activity that exceeded that of wild type. Error bars
biological replicates. (B) rice Os/RX14 genes. Error bars represent SD with represent SD with three biological replicates. Key: significantly different
at least five biological replicates. Restoration of stem strength in from respective mutant background by t test *p < 0.05, **p <0.01,
over-expression of (C) rice Os/IRX9 and Os/RX9L genes and (D) rice ***p < 0.001; significantly different from WT by t test:+p < 0.05.

To determine the level of XylT activity in the stems of the
complemented plants, microsomes were extracted from 5-week-
old stems for each plant line, and '4C-xylose incorporation onto
a xylohexaose acceptor in the presence of UDP-!*C-xylose was
measured (Figure 3E). As a reference, the irx9 and irxI14 plant
stems demonstrated XylT activities that were 29 and 20%, respec-
tively, to that of wild type. Notably, the irx9+ OsIRX9 line 14
demonstrated a XylT activity that was more than twice that of
wild type (¢ test: p <0.05). The second irx9+ OsIRX9 line was
135% that of wild type. The two irx9+ OsIRX9L lines were
63% (t test: p<0.01) and 38% that of wild type, and the two
irx14+ OsIRX14 lines were 41 and 47% that of wild type (¢
test: p < 0.01). Overall, in terms of XylT activity, all lines showed
a level of recovery from the irx9 and irxI4 mutants, but only
the irx9+4 OsIRX9 lines exceeded the XylT activity of the wild

type.

TISSUE SPECIFIC EXPRESSION OF Os/RX9, OsIRX9L, AND OsIRX14
GENES IN WILD TYPE RICE

While dicots have abundant xylan in secondary walls and very
low amounts in the primary walls, grass xylan is abundant in
both primary and secondary cell walls (Vogel, 2008). Accord-
ingly, IRX9 and IRX14 genes in Arabidopsis plants are primarily
expressed in cells undergoing secondary wall synthesis (Pefia et al.,
2007). To analyze the potentially different expression patterns
in rice, we used quantitative PCR with gene specific primers to
determine the tissue specific expression of the OsIRX9, OsIRX9L,
and OsIRX14 genes in wild type rice plants (Figure 5). Over-
all, OsIRX9 is expressed at a much lower level than OsIRX9L, a
difference from what has been reported in Arabidopsis (Schmid
et al., 2005). Similar to Arabidopsis expression, rice OsIRX9L is
expressed at moderate levels in many tissues, including leaves and
roots, whereas OsIRX9 is most prominently expressed in the stem.
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FIGURE 4 | Size-exclusion chromatography (SEC) of mutant, wild type,
and complemented lines. Length of xylan chain is measured by elution time
(min). Results indicate that the OsIRX9L line has a xylan length that is
intermediate between that of wild type and irx9; The OsIRX9 complemented
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line has a xylan length comparable to wild type; The OsIRX14 complemented
line appears to have a xylan chain length like the irx74 mutant. Equal amounts
of carbohydrate were loaded onto the column. Error bars represent SD with at
least three biological replicates.

All three genes have the highest level of expression in the 10 days
post germination (dpg) seedling and in the 30 dpg stem tissue.

DISCUSSION

THE PUTATIVE FUNCTIONAL DIVERGENCE OF /RX9 AND /RX9L

IRX9, IRX9L, and IRX14 are all members of the GT43 family, and
are essential for elongation of the xylan backbone, a process that is
expected to be conserved between dicots and commelinid mono-
cots. Accordingly, our results have demonstrated that OsIRX9,
OsIRX9L, and OsIRX14 have overlapping functions with their Ara-
bidopsis counterparts in terms of plant phenotypes (Figure 2A),
presence of irregular xylem cells (Figure 2B), xylose content of
stems (Figures 3A,B), stem strength (Figures 3C,D), xylan chain
length (Figure 4), and XylT activity (Figure 3E). Interestingly, we
found that OsIRX14 was able to complement irxI4 to an interme-
diate level in terms of xylose content of stems and XylT activity,
but not in terms of xylan chain length, indicating that the com-
plemented line was making more xylan chains. We found that
OsIRX9L was not able to complement the Arabidopsis irx9 mutant
plants as well as the OsIRX9 gene. These findings are consistent
with (Lee et al., 2010) who found that the Arabidopsis IRX9L gene
in the irx9 background had an intermediate level of complemen-
tation in terms of stem breaking strength and stem XylT activity.
In contrast, Wu et al. (2010) concluded that IRX9 and IRX9L
were essentially identical in their ability to complement irx9/irx9L
mutants, but they based this on appearance of the plants rather
than biochemical characterization. We also found that OsIRX9L
was more highly expressed in many developing tissues in wild type
rice, including leaves, with OsIRX9 expression almost entirely in
tissues rich in secondary cell walls (Figure 5). As seen in the phylo-
genetic tree in Figure 1, both Selaginella and Physcomitrella, basal
plant species from Lycopodiophyta and Bryophyta, respectively,
have IRX9L and IRX14 orthologs, but no IRX9 ortholog (Kulkarni

etal.,,2011; Harholtetal.,2012). The vascular tissues in Lycopodio-
phytes have cells with thickened walls, but several types of evidence
suggest that the vasculature of Lycopodiophytes has a different
evolutionary origin than in the Euphyllophytes (Harholt et al,,
2012).

Dicots, including Arabidopsis, have very little xylan in the pri-
mary cell walls, with most xylan deposition present in the sec-
ondary cell walls. This could explain why IRX9 is more highly
expressed in Arabidopsis than IRX9L, and also why both genes are
expressed in rice, which has an abundance of xylan in both primary
and secondary cell walls, with xylan playing an important role in
young tissue, such as the rapidly expanding cells of the seedling.
Taken together, our data suggests a functional divergence of IRX9
and IRX9L, with IRX9 being important for biosynthesis of xylans
in the secondary cell wall and IRX9L being important in the pri-
mary cell wall. Our results also suggest that IRX9L may play more
of an important role in species where there is more xylan present
in the primary cell walls, such as the grasses. Since the biochem-
ical function of plant GT43 proteins is not known, future studies
will be needed to elucidate possible functional divergence between
members of the IRX9 and IRXIL clades. A notable structural dif-
ference is the lack of a conserved DXD motif in the IRX9 clade,
while this motif is highly conserved in the IRX9L clade (Figure 1
in Appendix). The DXD motif is generally present in GTs with a
GT-A fold such as members of GT43, and is required for binding
of the divalent metal ion that coordinates the nucleotide sugar
substrate and facilitates catalysis (Breton et al., 2012).

DO /RX9 AND /RX14 OPERATE NON-REDUNDANTLY IN A PROTEIN
COMPLEX FOR B-(1,4)-XYLAN XYLOSYLTRANSFERASE ACTIVITY?
Arabidopsis IRX9 and IRX14 function non-redundantly in build-
ing the B-(1,4)-xylan backbone (Lee et al., 2010; Wu et al., 2010),
but neither of these proteins, nor IRX10 has been biochemically
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FIGURE 5 | Relative expression in wild type rice plants measured by
qPCR with rice gene specific primers of (A) OsIRX9 (0s07g49370) (B)
OsIRX9L (0Os01g48440) and (C) OsIRX14 (Os06g47340) in various
tissues at 10, 30, and 60 days post germination (dpg). Error bar
represent SD with three biological replicates.

purified and retained their XylT activity. This lends support to
the hypothesis that they operate together in a protein complex.
In support of these proteins operating in a complex, Zeng et al.
(2010) used TaGT43-4, which is closely related to the Arabidop-
sis IRX14 protein, to co-immunoprecipitate a protein complex in
wheat that had XylT, AraT, and GIcAT activities that worked in
a cooperative manner. Lee et al. (2012) heterologously expressed
IRX9 and IRX14 in tobacco cells and demonstrated a substan-
tial increase in the XylT activity as compared to plants expressing

either IRX9 or IRX14 alone, lending support to the hypothesis
that IRX9 and IRX14 operate cooperatively. We found an increase
of XylT activity that was over twice that of wild type Arabidop-
sis stems when the rice OsIRX9 gene alone was over-expressed in
irx9 plants (Figure 3E). These results are consistent with stud-
ies in which an increase over wild type stem XylT activity was
reported in irx9 plants with over-expression of IRX9 (Lee et al,,
2010, 2011). This could indicate either that IRX9 was the limiting
protein in the protein complex or that IRX9 can operate without
a protein complex in building the B-(1,4)-xylan backbone. It is
also possible that these two proteins are biochemically inactive,
serving a structural role for the IRX10 protein, which is known to
play a role in building the xylan backbone (Brown et al., 2009).
This is similar to the proposed function of the GAUT7 anchoring
GAUT]1 in a protein complex for pectin biosynthesis (Atmodjo
et al,, 2011). In agreement with this hypothesis, a study of the
ESTs derived from the Psyllium (Platago ovata) seed mucilagi-
nous layer, which is rich in xylan, detected abundant amounts
of transcript for IRX10, and very little if any for IRX9 or IRX14,
indicating that IRX10 is sufficient to synthesize xylan in that tis-
sue (Jensen et al., 2011). More work must be completed to better
understand the mechanism of xylan chain synthesis and how the
IRX9, IRX14, and IRX10 proteins operate in building the xylan
backbone.

OVER-EXPRESSION OF Os/RX9 IN ARABIDOPSIS LEADS TO AN
INCREASE IN STEM STRENGTH
The secondary cell walls of dicots are almost entirely composed of
cellulose, lignin, and xylan (Vogel, 2008). The down-regulation of
the synthesis of xylan (Lee et al., 2011), cellulose (Kokubo et al.,
1989, 1991), and lignin (Vanholme et al., 2008) have been demon-
strated to decrease the strength of plant secondary cell walls. Our
results demonstrate that stem strength is significantly increased to
124% that of wild type with the heterologous expression of the
OsIRX9 gene (Figure 3C). This could be due to reinforcement
of the secondary cell walls in the vessel elements, although cross
sections showed no discernable increase in vessel wall thickness
(Figure 2B). Interestingly, Lee et al. (2011) found that the over-
expression of the poplar GT43A, B, and E genes in Arabidopsis
irx9 plants rescued the stem strength phenotype to the level of
wild type, but not above that level. Likewise, the over-expression
of AtIRX9 in Arabidopsis irx9 plants did not lead to an increase
in stem strength over that of wild type plants (Lee et al., 2010).
It is unclear why over-expression of a rice xylan synthase gene,
but not its poplar or Arabidopsis orthologs, in Arabidopsis would
increase stem strength. However, as plant stem lodging is a signif-
icant cause of crop losses worldwide (Berry et al., 2004; Hall et al.,
2009; Ma, 2009), the finding that heterologous over-expression of
a rice xylan synthesis gene can increase the strength of a plant
stems has important implications for crop plant biotechnology.
In conclusion, rice OsIRX9, OsIRX9L, and OsIRX14 have over-
lapping functions with the Arabidopsis counterparts. We also show
that OsIRX9L is more highly expressed in many developing tissues
in wild type rice, with OsIRX9 expression almost entirely in tis-
sues rich in secondary cell walls — indicating a potential functional
differentiation between IRX9 and IRX9L genes. In addition, we
have found that heterologous over-expression of rice OsIRX9 in
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Arabidopsis irx9 plants increases the stem strength beyond that of
wild type.

MATERIALS AND METHODS

PLANT GROWTH AND PLANT TRANSFORMATIONS

Arabidopsis thaliana accession Columbia-0 (Col-0) was obtained
from the Arabidopsis Biological Resource Center (ABRC'). T-
DNA insertion mutants (irx9, Salk_058238; irxI4, Salk_038212)
were localized in the SIGnAL Salk? collections and obtained from
the ABRC. Homozygous plants were identified by PCR with gene
specific primers (Table 1). Seeds were germinated and seedlings
then grown on soil (PRO-MIX, Premier Horticulture Inc., Quak-
ertown, PA, USA) in a growth chamber under short-day light
conditions (10h photoperiod, 120 wmol m~2s~!, at 22°C and
60% RH/14 h of dark at 22°C and 60% RH). After 3 weeks, plants
were transferred to long-day conditions (16 h photoperiod/8 h
dark; otherwise as above). Arabidopsis plants were transformed
using Agrobacterium tumefaciens GV 3101 pmp90 via the floral
dip method (Clough and Bent, 1998). For BASTA selection, seeds
were germinated on soil as described above and sprayed every
2 days for a total of five times with a glufosinate-ammonium (Cres-
cent Chemical Company, Islandia, NY, USA) solution (40 mg/ml).
Resistant plants were transferred to new pots and further grown,
as described above.

GENE CLONING

The cDNAs for Os07g49370, Os01g48440, and Os06g47340 were
amplified by PCR using gene specific primers (Table 1) from
first strand ¢cDNA made from pooled rice samples. Coding

Uhttp://abrc.osu.edu/
Zhttp://signal.salk.edu/

sequences for genes were cloned using Gateway technology (Invit-
rogen) and Gateway-compatible primers (Table 1), as follows:
PCR reaction products were gel-purified using the MinElute
Gel extraction kit (Qiagen, Valencia, CA, USA) and used for
recombination reactions into pENTR-D-TOPO cloning (Invit-
rogen), then recombination into the destination vector pEarley-
Gate 101 (Earley et al., 2006) using LR clonase enzyme mix
(Invitrogen).

EXPRESSION ANALYSIS

Total RNA was extracted using the RNeasy plant mini kit (Qia-
gen, Valencia, CA, USA) following the manufacturer’s instructions.
RNA preparations were treated with DNasel (Qiagen, Valen-
cia, CA, USA) to remove traces of DNA contamination. One
microgram of RNA was used for reverse transcription with the
Transcriptor high fidelity cDNA synthesis kit (Roche) and oligo
dT primers. After synthesis, the cDNA reaction was diluted four
times in RNAse-free water, and 2 |11 was used for PCR using the
Fast SYBR Green master mix (Applied Biosystems, Carlsbad, CA,
USA) and gene specific primers in a Step ONE plus QPCR machine
(Applied Biosystems, Carlsbad, CA, USA). Primers for QPCR are
listed in Table 1. QPCR results were normalized to the internal
ubiquitin control and is presented as relative expression calculated
according to Hellemans et al. (2007).

MICROSCOPY

Stems from 6-week-old plants were sectioned directly above the
second internode. The stems were embedded in 7% agarose
and sectioned (60pm) using a Leica VT1000S vibratome,
as described (Manabe et al, 2011). They were stained
with a 0.1% toluidine blue solution, and imaged on a
Leica MZ16F fluorescence stereomicroscope under bright field
(40x).

Table 1| List of primers used for gene cloning and quantitative PCR.

Primer name Orientation Sequence (5 to 3') Target

0s07g49370 F Sense CACCATGGCGTCGGCAGGTGGCTGCAAG 0s07g49370

0s07g49370 R Antisense CTAGAGCGTAGTTTGGATGCG 0s07g49370

0s01g48440 F Sense CACCATGTCCCGAAGGAATGCCGGGGCA 0s01g48440

0s01g48440 R Antisense TTATGTTATTGGCACAACAGCATC 0s01g48440

0s06947340 F Sense CACCATGATGAAGTCGCTGCTGCCG 0s06947340

0s06g47340 R Antisense TCAGTTCTCCTTCCGCTTTGTGGT 0s06g47340

0s07g49370 gPCR F Sense CTCCGGAGACGTTAATGGAAGT gRT PCR amplicon Os07g49370
0s07g49370 gPCR R Antisense CTGCACGAACTTCACTGATTCC gRT PCR amplicon Os07g49370
0Os01g48440 gPCR F Sense GTATAGTGCATTTCGCTGATGAAG gRT PCR amplicon Os01g48440
0s01g48440 gPCR R Antisense TTCTAGAACCACTCTGTACTTTGTCC gRT PCR amplicon Os01g48440
0s06g47340 gPCR F Sense GTCACGCAACCGAGAATCGTAT gRT PCR amplicon Os06g47340
0s06g47340 gPCR R Antisense AGCTATGAACATTGCTGTCATCC gRT PCR amplicon Os06g47340
UBQ 10 F Sense GGCCTTGTATAATCCCTGATGAATAAG gRT PCR reference gene

UBQ 10 R Antisense AAAGAGATAACAGGAACGGAAACATAGT gRT PCR reference gene

IRX9F Sense GCTGGTAAGGCCTCATTTTTC Genotyping irx9, Salk_058238
IRX9R Antisense AACTTACCAACCCACCCATTC Genotyping irx9, Salk_058238
IRX14F Sense AACGACACGTGTACCTCCTTG Genotyping irx14, Salk_ 038212
IRX14R Antisense AACATCACAATCCCATCAAGC Genotyping irx14, Salk_ 038212
LBa1 Sense TGGTTCACGTAGTGGGCCATCG Left border primer of SALK lines
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STEM STRENGTH

Ultimate stress was measured using an in-house tensile testing
instrument (Vega-Sanchez and Ronald, 2010; Varanasi et al., 2012).
The 5-week-old plant stems were cut at the seed using a razor blade
in one stroke without any damage to the stem. The diameter of the
stem at the second internode and its total length were measured.
The stem segment was then glued on to the sample holders using
hot glue (Stanley DualMelt). Only 5mm of the stem remained
unglued between the sample holders. The sample holders were
then screwed on to the apparatus and the tensile strength mea-
surements were taken at room temperature. The sample holders
consisted of a support system for the unglued portion of the stem
to prevent it from damage during the holder installation. The sup-
port was removed from the holder just before starting the analysis.
Stress was calculated as a ratio of the force and cross-sectional area
of the stem.

CELL WALL ISOLATION AND MONOSACCHARIDE COMPOSITION
ANALYSIS

For Arabidopsis transformants, 6-week-old primary stem tissue
was collected, frozen in liquid nitrogen, and freeze-dried overnight
using a lyophilizer. AIR preparation and destarching was per-
formed according to methods described by Yin et al. (2011). For
monosaccharide composition analysis, 5 mg was hydrolyzed in 2 M
trifluoroacetic acid at 120°C for 1 h. The released monosaccharides
were separated by HPAEC on a Dionex ICS3000 system (Sunny-
vale, CA, USA) equipped with a pulsed amperometric detector
(PAD) as described by Harholt et al. (2006).

MICROSOMAL EXTRACTION OF ARABIDOPSIS STEMS

For protein isolation, 6-week-old whole stems were flash frozen,
ground in a mortar and pestle in 15 mL of buffer (50 mM HEPES
pH 7.0, 400 mM sucrose, 1 mM PMSE, 1% w/v PVPP, Protease
Inhibitor Cocktail). This was then filtered through Miracloth mesh
and centrifuged at 3,000 x g for 10 min. The supernatant was
then centrifuged at 50,000 x g at 4°C for 1 h. (Beckman Ultracen-
trifuge). The pellets containing the microsomes were resuspended
in a 50 mM HEPES pH 7.0, 400 mM sucrose buffer and stored at
—80°C. Protein concentration was determined using the Bradford
method.

XYLOSYLTRANSFERASE ACTIVITY ASSAY

Microsomal activity assays were based on the protocol described
by (Lee et al., 2007a). Microsomes corresponding to 40 g pro-
tein were incubated with 50 mM HEPES-KOH, pH 6.8, 400 mM
sucrose, 5mM MnCl,, 1 mM DTT, 0.5% Triton X-100, 400 uM
xylohexaose, 3.7 M UDP-[!4C]Xylose (740Bq per reaction;
American Radiolabeled Chemicals, Inc., St. Louis, MO, USA) in
a total reaction volume of 50 L. After incubation at 24°C for 3 h,
reaction was stopped by adding 5l termination buffer (0.3 M
aceticacid containing 20 mM EGTA). The supernatant was spotted
onto Whatman 3 mm chromatography paper (Whatman, Kent,
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CONSTRUCTION OF GT43 PHYLOGENY

The GT43 tree was constructed using the Neighbor-Joining
method (Saitou and Nei, 1987). The optimal tree with the sum of
branch length = 16.96637902 is shown. The tree is drawn to scale,
with branch lengths in the same units as those of the evolutionary
distances used to infer the phylogenetic tree. The evolutionary dis-
tances were computed using the JTT matrix-based method (Jones
et al., 1992) and are in the units of the number of amino acid
substitutions per site. The rate variation among sites was modeled
with a gamma distribution (shape parameter =1). The analysis
involved 21 amino acid sequences. All ambiguous positions were
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tions in the final dataset. Evolutionary analyses were conducted in
MEGAS5 (Tamura et al., 2011).
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FIGURE A1 | Protein sequence alignments for (A) AtIRX9 and AtIRX9L, and (B) AtIRX14 and the respective closely related rice genes. Amino acids with
blue shading and yellow lettering are 100% conserved compared to AtIRX9 and AtIRX14, respectively.
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