131 research outputs found

    Theory of "Jitter" Radiation from Small-Scale Random Magnetic Fields and Prompt Emission from Gamma-Ray Burst Shocks

    Get PDF
    Abridged.-- We demonstrate that the radiation emitted by ultrarelativistic electrons in highly nonuniform, small-scale magnetic fields is different from synchrotron radiation if the electron's transverse deflections in these fields are much smaller than the beaming angle. A quantitative analytical theory of this radiation, which we refer to as jitter radiation, is developed. It is shown that the emergent spectrum is determined by statistical properties of the magnetic field. As an example,we then use the model of a magnetic field in internal shocks of GRBs. The spectral power distribution of radiation produced by the power-law electrons is well described by a sharply broken power-law with indices 1 and -(p-1)/2 and the jitter break frequency is independent of the field strength but depends on the electron density in the ejecta. Since large-scale fields may also be present in the ejecta, we construct a two-component, jitter+synchrotron spectral model of the prompt γ\gamma-ray emission. Quite surprisingly, this model seems to be readily capable of explaining several properties of time-resolved spectra of some GRBs, such as (i) the violation of the constraint on the low-energy spectral index called the synchrotron ``line of death'', (ii) the sharp spectral break at the peak frequency, inconsistent with the broad synchrotron bump, (iii) the evidence for two spectral sub-components, and (iv) possible existence of emission features called ``GRB lines''. We believe these facts strongly support both the existence of small-scale magnetic fields and the proposed radiation mechanism from GRB shocks. As an example, we use the composite model to analyze GRB 910503 which has two spectral peaks.Comment: 12 pages (emulateapj), 11 figures (EPS), ApJ, accepted. For related work, see http://cfa-www.harvard.edu/~mmedved

    Exotic Halophila stipulacea is an introduced carbon sink for the Eastern Mediterranean Sea

    Get PDF
    Carbon and nitrogen storage in exotic Halophila stipulacea were compared to that in native Posidonia oceanica and Cymodocea nodosa meadows and adjacent unvegetated sediments of the Eastern Mediterranean Sea and to that in native H. stipulacea of the Red Sea at sites with different biogeochemical conditions and level of human pressure. Exotic H. stipulacea possessed considerable storing capacity, with 2-fold higher Corg stock (0.71 ± 0.05 kg m−2 in the top 20 cm of sediment) and burial (14.78 gCorg m−2 y−1) than unvegetated areas and C. nodosa meadows and, surprisingly, comparable to P. oceanica. N (0.07 ± 0.01 kg m−2) and Cinorg (14.06 ± 8.02 kg m−2) stocks were similar between H. stipulacea and C. nodosa or unvegetated sediments, but different to P. oceanica. Corg and N stocks were higher in exotic than native H. stipulacea populations. Based on isotopic mixing model, organic material trapped in H. stipulacea sediments was mostly allochthonous (seagrass detritus 17% vs seston 67%). Corg stock was similar between monospecific and invaded C. nodosa meadows by H. stipulacea. Higher stocks were measured in the higher human pressure site. H. stipulacea introduction may contribute in the increase of carbon sequestration in the Eastern Mediterranean

    Using collective intelligence to identify barriers to teaching 12–19 year olds about the ocean in Europe

    Get PDF
    Since the degradation of the marine environment is strongly linked to human activities, having citizens who appreciate the ocean's influence on them and their influence on the ocean is important. Research has shown that citizens have a limited understanding of the ocean and it is this lack of ocean literacy that needs to change. This study maps the European landscape of barriers to teaching 12–19 year olds about the ocean, through the application of Collective Intelligence, a facilitation and problem solving methodology. The paper presents a meta-analysis of the 657 barriers to teaching about the ocean, highlighting how these barriers are interconnected and influence one another in a European Influence Map. The influence map shows 8 themes: Awareness and Perceived knowledge; Policies and Strategies; Engagement, formal education sector; the Ocean itself; Collaboration; Connections between humans and the ocean and the Blue Economy, having the greatest influence and impact on marine education. “Awareness and Perceived knowledge” in Stage 1, exerts the highest level of overall influence in teaching 12–19 year olds about the ocean. This map and study serves as a roadmap for policy makers to implement mobilisation actions that could mitigate the barriers to teaching about the ocean. Examples of such actions include free marine education learning resources such as e-books, virtual laboratories or hands-on experiments. Thus, supporting educators in taking on the challenge of helping our youth realise that the ocean supports life on Earth is essential for education, the marine and human well-being

    Domino-style earthquakes along blind normal faults in Northern Thessaly (Greece): kinematic evidence from field observations, seismology, SAR interferometry and GNSS

    Get PDF
    Here we present a joint analysis of the geodetic, seismological and geological data of the March 2021 Northern Thessaly seismic sequence, that were gathered and processed as of April 30, 2021. First, we relocated seismicity data from regional and local networks and inferred the dip-direction (NE) and dip-angle (38°) of the March 3, 2021 rupture plane. Furthermore, we used ascending and descending SAR images acquired by the Sentinel-1 satellites to map the co-seismic displacement field. Our results indicate that the March 3, 2021 Mw=6.3 rupture occurred on a NE-dipping, 39° normal fault located between the villages Zarko (Trikala) and Damasi (Larissa). The event of March 4, 2021 occurred northwest of Damasi, along a fault oriented WNW-ESE and produced less deformation than the event of the previous day. The third event occurred on March 12, 2021 along a south-dipping normal fault. We computed 22 focal mechanisms of aftershocks with M≥4.0 using P-wave first motion polarities. Nearly all focal mechanisms exhibit normal kinematics or have a dominant normal dip-slip component. The use of InSAR was crucial to differentiate the ground deformation between the ruptures. The majority of deformation occurs in the vertical component, with a maximum of 0.39 m of subsidence over the Mw=6.3 rupture plane, south and west of Damasi. A total amount of 0.3 m horizontal displacement (E-W) was measured. We also used GNSS data (at 30-s sampling interval) from twelve permanent stations near the epicentres to obtain 3D seismic offsets of station positions. Only the first event produces significant displacement at the GNSS stations (as predicted by the fault models, themselves very well constrained by InSAR). We calculated several post-seismic interferograms, yet we have observed that there is almost no post-seismic deformation, except in the footwall area (Zarkos mountain). This post-seismic deformation is below the 7 mm level (quarter of a fringe) in the near field and below the 1 mm level at the GNSS sites. The cascading activation of the three events in a SE to NW direction points to a pattern of domino-style earthquakes, along neighbouring fault segments. The kinematics of the ruptures point to a counter-clockwise change in the extension direction of the upper crust (from NE-SW near Damasi to N-S towards northwest, near Verdikoussa)

    The functional anatomy of semantic retrieval is influenced by gender, menstrual cycle, and sex hormones

    Get PDF
    This study examines the neurobiology of semantic retrieval and describes the influence of gender, menstrual cycle, and sex hormones on semantic networks. Healthy right-handed subjects (12 men, 12 women) were investigated with 3T-fMRI during synonym generation. Behavioral performance and sex hormone levels were assessed. Women were examined during the early follicular and midluteal cycle phase. The activation pattern in all groups involved left frontal and temporal as well as bilateral medial frontal, cingulate, occipital, basal ganglia, and cerebellar regions. Men showed greater left frontal activation than women in both menstrual cycle phases. Women yielded high correlations of left prefrontal activation with estradiol in the midluteal phase and with progesterone in both phases. Testosterone levels correlated highly with left prefrontal activation in all three groups. In all, we describe a cerebral network involved in semantic processing and demonstrate that it is significantly affected by gender and sex steroid hormones

    Gamma-Ray Bursts

    Get PDF
    Gamma-ray bursts are the most luminous explosions in the Universe, and their origin and mechanism are the focus of intense research and debate. More than three decades after their discovery, and after pioneering breakthroughs from space and ground experiments, their study is entering a new phase with the recently launched Swift satellite. The interplay between these observations and theoretical models of the prompt gamma ray burst and its afterglow is reviewed.Comment: To appear in Rep. Prog. Phys., 74 pages, 11 figures, uses iopart.cls macros; revisions and updated reference
    corecore