7,541 research outputs found
Deep-water organic-mineral sediments of the black sea as the object of mining and dewatering
The results of laboratory investigations of grain-size, physical, mechanical and rheological properties of the deep-sea organic-mineral sediments sampled from the depth of 1,920 – 2,150 m at the polygon “Sapropels” in the Black Sea are given. The results obtained are analyzed. The class of particle size distribution and soil category in difficulty of developing for this type of sediments are established.Представлено результати лабораторних досліджень гранулометричного складу, фізикомеханічних та реологічних властивостей глибоководних органо-мінеральних відкладень Чорного моря, відібраних з глибини 1920 – 2150 м на полігоні «Сапропелі». Проведено аналіз отриманих результатів. Визначено клас даного типу відкладень по гранулометричному складу і категорія ґрунту по важкості розробки.Приведены результаты лабораторных исследований гранулометрического состава, физикомеханических и реологических свойств глубоководных органо-минеральных осадков
Черного моря, отобранных с глубины 1920 – 2150 м на полигоне «Сапропели». Проведен
анализ полученных результатов. Определен класс данного типа отложений по гранулометрическому составу и категория грунта по трудности разработки
Three-body calculation of the level shift in kaonic deuterium
The first calculation of kaonic deuterium level shift using Faddeev-type
equations was performed. The obtained results were compared with commonly used
approximate approaches.Comment: The version accepted in Phys. Lett.
Phase transformation B1 to B2 in TiC, TiN, ZrC and ZrN under pressure
Phase stability of various phases of MX (M = Ti, Zr; X = C, N) at equilibrium
and under pressure is examined based on first-principles calculations of the
electronic and phonon structures. The results reveal that all B1 (NaCl-type) MX
structures undergo a phase transition to the B2-structures under high pressure
in agreement with the previous total-energy calculations. The B1-MX structures
are dynamically stable under very high pressure (210-570 GPa). The
pressure-induced B2 (CsCl-type) MC phases are dynamically unstable even at high
pressures, and TiN and ZrN are found to crystallize with the B2-structure only
at pressures above 55 GPa. The first-order B1-to-B2 phase transition in these
nitrides is not related to the softening of phonon modes, and the dynamical
instability of B2-MX is associated with a high density of states at the Fermi
level.Comment: 9 pages, 4 figure
Entropy in quantum chromodynamics
We review the role of zero-temperature entropy in several closely-related
contexts in QCD. The first is entropy associated with disordered condensates,
including . The second is vacuum entropy arising from QCD
solitons such as center vortices, yielding confinement and chiral symmetry
breaking. The third is entanglement entropy, which is entropy associated with a
pure state, such as the QCD vacuum, when the state is partially unobserved and
unknown. Typically, entanglement entropy of an unobserved three-volume scales
not with the volume but with the area of its bounding surface. The fourth
manifestation of entropy in QCD is the configurational entropy of
light-particle world-lines and flux tubes; we argue that this entropy is
critical for understanding how confinement produces chiral symmetry breakdown,
as manifested by a dynamically-massive quark, a massless pion, and a condensate.Comment: 22 pages, 2 figures. Preprint version of invited review for Modern
Physics Letters
Fluid Models for Kinetic Effects on Coherent Nonlinear Alfven Waves. II. Numerical Solutions
The influence of various kinetic effects (e.g. Landau damping, diffusive and
collisional dissipation, and finite Larmor radius terms) on the nonlinear
evolution of finite amplitude Alfvenic wave trains in a finite-beta environment
is systematically investigated using a novel, kinetic nonlinear Schrodinger
(KNLS) equation. The dynamics of Alfven waves is sensitive to the sense of
polarization as well as the angle of propagation with respect to the ambient
magnetic field. Numerical solution for the case with Landau damping reveals the
formation of dissipative structures, which are quasi-stationary, S-polarized
directional (and rotational) discontinuities which self-organize from parallel
propagating, linearly polarized waves. Parallel propagating circularly
polarized packets evolve to a few circularly polarized Alfven harmonics on
large scales. Stationary arc-polarized rotational discontinuities form from
obliquely propagating waves. Collisional dissipation, even if weak, introduces
enhanced wave damping when beta is very close to unity. Cyclotron motion
effects on resonant particle interactions introduce cyclotron resonance into
the nonlinear Alfven wave dynamics.Comment: 38 pages (including 23 figures and 1 table
- …