323 research outputs found

    Bogolyubov-Hartree-Fock approach to studying the QCD ground state

    Full text link
    The quark's behaviour while influenced by a strong stochastic gluon field is analyzed. An approximate procedure for calculating the effective Hamiltonian is developed and the corresponding ground state within the Hartree-Fock-Bogolyubov approach is found. The comparative analysis of various Hamiltonian models is given and transition to the chiral limit in the Keldysh model is discussed in detail.Comment: 18 pages, 4 figures, new version of the manuscrip

    Universality of the Gunn effect: self-sustained oscillations mediated by solitary waves

    Get PDF
    The Gunn effect consists of time-periodic oscillations of the current flowing through an external purely resistive circuit mediated by solitary wave dynamics of the electric field on an attached appropriate semiconductor. By means of a new asymptotic analysis, it is argued that Gunn-like behavior occurs in specific classes of model equations. As an illustration, an example related to the constrained Cahn-Allen equation is analyzed.Comment: 4 pages,3 Post-Script figure

    Spectrometric method to detect exoplanets as another test to verify the invariance of the velocity of light

    Full text link
    Hypothetical influences of variability of light velocity due to the parameters of the source of radiation, for the results of spectral measurements of stars to search for exoplanets are considered. Accounting accelerations of stars relative to the barycenter of the star - a planet (the planets) was carried out. The dependence of the velocity of light from the barycentric radial velocity and barycentric radial acceleration component of the star should lead to a substantial increase (up to degree of magnitude) semi-major axes of orbits detected candidate to extrasolar planets. Consequently, the correct comparison of the results of spectral method with results of other well-known modern methods of detecting extrasolar planets can regard the results obtained in this paper as a reliable test for testing the invariance of the velocity of light.Comment: 11 pages, 5 figure

    Diagrammatic theory for Anderson Impurity Model. Stationary property of the thermodynamic potential

    Full text link
    A diagrammatic theory around atomic limit is proposed for normal state of Anderson Impurity Model. The new diagram method is based on the ordinary Wick's theorem for conduction electrons and a generalized Wick's theorem for gtrongly correlated impurity electrons. This last theorem coincides with the definition of Kubo cumulants. For the mean value of the evolution operator a linked cluster theorem is proved and a Dyson's type equations for one-particle propagators are established. The main element of these equations is the correlation function which contains the spin, charge and pairing fluctuations of the system. The thermodynamic potential of the system is expressed through one-particle renormalized Green's functions and the corelation function. The stationary property of the thermodynamic potential is established with respect to the changes of correlation function.Comment: 7 pages, 6 figures, Submitted to PR

    Spectral functions of the spinless Holstein model

    Full text link
    An analytical approach to the one-dimensional spinless Holstein model is proposed, which is valid at finite charge-carrier concentrations. Spectral functions of charge carriers are computed on the basis of self-energy calculations. A generalization of the Lang-Firsov canonical transformation method is shown to provide an interpolation scheme between the extreme weak- and strong-coupling cases. The transformation depends on a variationally determined parameterthat characterizes the charge distribution across the polaron volume. The relation between the spectral functions of polarons and electrons, the latter corresponding to the photoemission spectrum, is derived. Particular attention is paid to the distinction between the coherent and incoherent parts of the spectra, and their evolution as a function of band filling and model parameters. Results are discussed and compared with recent numerical calculations for the many-polaron problem.Comment: 20 pages, 15 figures, final versio

    Resonant nonlinear magneto-optical effects in atoms

    Get PDF
    In this article, we review the history, current status, physical mechanisms, experimental methods, and applications of nonlinear magneto-optical effects in atomic vapors. We begin by describing the pioneering work of Macaluso and Corbino over a century ago on linear magneto-optical effects (in which the properties of the medium do not depend on the light power) in the vicinity of atomic resonances, and contrast these effects with various nonlinear magneto-optical phenomena that have been studied both theoretically and experimentally since the late 1960s. In recent years, the field of nonlinear magneto-optics has experienced a revival of interest that has led to a number of developments, including the observation of ultra-narrow (1-Hz) magneto-optical resonances, applications in sensitive magnetometry, nonlinear magneto-optical tomography, and the possibility of a search for parity- and time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002, Figure added, typos corrected, text edited for clarit

    Basics of Bose-Einstein Condensation

    Full text link
    The review is devoted to the elucidation of the basic problems arising in the theoretical investigation of systems with Bose-Einstein condensate. Understanding these challenging problems is necessary for the correct description of Bose-condensed systems. The principal problems considered in the review are as follows: (i) What is the relation between Bose-Einstein condensation and global gauge symmetry breaking? (ii) How to resolve the Hohenberg-Martin dilemma of conserving versus gapless theories? (iii) How to describe Bose-condensed systems in strong spatially random potentials? (iv) Whether thermodynamically anomalous fluctuations in Bose systems are admissible? (v) How to create nonground-state condensates? Detailed answers to these questions are given in the review. As examples of nonequilibrium condensates, three cases are described: coherent modes, turbulent superfluids, and heterophase fluids.Comment: Review articl
    corecore