520 research outputs found

    Pulsed laser treatment at Fe/C<SUB>6</SUB>H<SUB>6</SUB> interface: a Mossbauer effect study

    Get PDF
    The pulsed ruby laser induced reactive-quenching process at Fe/C6H6 Ibenzenel has been investigated using conversion electron Mossbauer spectroscopy [CEMS]. It is shown that iron carbide phases can be synthesized when an iron foil immersed in benzene is treated with ruby Laser pulses [&#955;=694 nm, pulse width ~30 ns, energy density =15 J/cm2]. The results indicate the formation of &#949;-carbide and Fe5C2 phases in the as-treated sample and its transformation to Fe3C upon thermal treatment. The result of the CEMS measurements are supported by small angle X-ray diffractometry

    A conversion electron Mossbauer spectroscopy study of ion beam mixing at Fe: polyethylene interface

    Get PDF
    The effects of ion beam induced atomic mixing at the Fe-Polyethylene interface have been investigated by means of conversion electron Mossbauer spectroscopy [CEMS]. It is shown that the as deposited and ion beam mixed composites exhibit distinctly different features. In particular, the ion beam mixed composite shows that presence of Fe2+ state in polyethylene matrix along with the Fe-C austenite like phase

    Fe/Co Alloys for the Catalytic Chemical Vapor Deposition Synthesis of Single- and Double-Walled Carbon Nanotubes (CNTs). 1. The CNT−Fe/Co−MgO System

    Get PDF
    Mg0.90FexCoyO (x + y ) 0.1) solid solutions were synthesized by the ureic combustion route. Upon reduction at 1000 °C in H2-CH4 of these powders, Fe/Co alloy nanoparticles are formed, which are involved in the formation of carbon nanotubes, which are mostly single and double walled, with an average diameter close to 2.5 nm. Characterizations of the materials are performed using 57Fe Mo¨ssbauer spectroscopy and electron microscopy, and a well-established macroscopic method, based on specific-surface-area measurements, was applied to quantify the carbon quality and the nanotubes quantity. A detailed investigation of the Fe/Co alloys’ formation and composition is reported. An increasing fraction of Co2+ ions hinders the dissolution of iron in the MgO lattice and favors the formation of MgFe2O4-like particles in the oxide powders. Upon reduction, these particles form R-Fe/Co particles with a size and composition (close to Fe0.50Co0.50) adequate for the increased production of carbon nanotubes. However, larger particles are also produced resulting in the formation of undesirable carbon species. The highest CNT quantity and carbon quality are eventually obtained upon reduction of the iron-free Mg0.90Co0.10O solid solution, in the absence of clusters of metal ions in the starting material. Introduction Catalyti

    Borrelia valaisiana resist complement-mediated killing independently of the recruitment of immune regulators and inactivation of complement components

    Get PDF
    Spirochetes belonging to the Borrelia (B.) burgdorferi sensu lato complex differ in their resistance to complement-mediated killing, particularly in regard to human serum. In the present study, we elucidate the serum and complement susceptibility of B. valaisiana, a genospecies with the potential to cause Lyme disease in Europe as well as in Asia. Among the investigated isolates, growth of ZWU3 Ny3 was not affected while growth of VS116 and Bv9 was strongly inhibited in the presence of 50% human serum. Analyzing complement activation, complement components C3, C4 and C6 were deposited on the surface of isolates VS116 and Bv9, and similarly the membrane attack complex was formed on their surface. In contrast, no surface-deposited components and no aberrations in cell morphology were detected for serum-resistant ZWU3 Ny3. While further investigating the protective role of bound complement regulators in mediating complement resistance, we discovered that none of the B. valaisiana isolates analyzed bound complement regulators Factor H, Factor H-like protein 1, C4b binding protein or C1 esterase inhibitor. In addition, B. valaisiana also lacked intrinsic proteolytic activity to degrade complement components C3, C3b, C4, C4b, and C5. Taken together, these findings suggest that certain B. valaisiana isolates differ in their capability to resist complement-mediating killing by human serum. The molecular mechanism utilized by B. valaisiana to inhibit bacteriolysis appears not to involve binding of the key host complement regulators of the alternative, classical, and lectin pathways as already known for serum-resistant Lyme disease or relapsing fever borreliae

    Carbon Nanotubes by a CVD Method. Part I: Synthesis and Characterization of the (Mg, Fe)O Catalysts

    Get PDF
    The controlled synthesis of carbon nanotubes by chemical vapor deposition requires tailored and wellcharacterized catalyst materials. We attempted to synthesize Mg1-xFexO oxide solid solutions by the combustion route, with the aim of performing a detailed investigation of the influence of the synthesis conditions (nitrate/urea ratio and the iron content) on the valency and distribution of the iron ions and phases. Notably, characterization of the catalyst materials is performed using 57Fe Mo¨ssbauer spectroscopy, X-ray diffraction, and electron microscopy. Several iron species are detected including Fe2+ ions substituting for Mg2+ in the MgO lattice, Fe3+ ions dispersed in the octahedral sites of MgO, different clusters of Fe3+ ions, and MgFe2O4-like nanoparticles. The dispersion of these species and the microstructure of the oxides are discussed. Powders markedly different from one another that may serve as model systems for further study are identified. The formation of carbon nanotubes upon reduction in a H2/CH4 gas atmosphere of the selected powders is reported in a companion paper

    Carbon Nanotubes by a CVD Method. Part II: Formation of Nanotubes from (Mg, Fe)O Catalysts

    Get PDF
    The aim of this paper is to study the formation of carbon nanotubes (CNTs) from different Fe/MgO oxide powders that were prepared by combustion synthesis and characterized in detail in a companion paper. Depending on the synthesis conditions, several iron species are present in the starting oxides including Fe2+ ions, octahedral Fe3+ ions, Fe3+ clusters, and MgFe2O4-like nanoparticles. Upon reduction during heating at 5 °C/min up to 1000 °C in H2/CH4 of the oxide powders, the octahedral Fe3+ ions tend to form Fe2+ ions, which are not likely to be reduced to metallic iron whereas the MgFe2O4-like particles are directly reduced to metallic iron. The reduced phases are R-Fe, Fe3C, and ç-Fe-C. Fe3C appears as the postreaction phase involved in the formation of carbon filaments (CNTs and thick carbon nanofibers). Thick carbon nanofibers are formed from catalyst particles originating from poorly dispersed species (Fe3+ clusters and MgFe2O4-like particles). The nanofiber outer diameter is determined by the particle size. The reduction of the iron ions and clusters that are well dispersed in the MgO lattice leads to small catalytic particles (<5 nm), which tend to form SWNTS and DWNTs with an inner diameter close to 2 nm. Well-dispersed MgFe2O4-like particles can also be reduced to small metal particles with a narrow size distribution, producing SWNTs and DWNTs. The present results will help in tailoring oxide precursors for the controlled formation of CNTs

    A neural oscillations perspective on phonological development and phonological processing in developmental dyslexia

    Get PDF
    Children’s ability to reflect upon and manipulate the sounds in words (’phonological awareness’) develops as part of natural language acquisition, supports reading acquisition, and develops further as reading and spelling are learned. Children with developmental dyslexia typically have impairments in phonological awareness. Many developmental factors contribute to individual differences in phonological development. One important source of individual differences may be the child’s sensory/neural processing of the speech signal from an amplitude modulation (~ energy or intensity variation) perspective, which may affect the quality of the sensory/neural representations (’phonological representations’) that support phonological awareness. During speech encoding, brain electrical rhythms (oscillations, rhythmic variations in neural excitability) re-calibrate their temporal activity to be in time with rhythmic energy variations in the speech signal. The accuracy of this neural alignment or ’entrainment’ process is related to speech intelligibility. Recent neural studies demonstrate atypical oscillatory function at slower rates in children with developmental dyslexia. Potential relations with the development of phonological awareness by children with dyslexia are discussed.Medical Research Council, G0400574 and G090237
    corecore