311 research outputs found

    Information entropy and nucleon correlations in nuclei

    Full text link
    The information entropies in coordinate and momentum spaces and their sum (SrS_r, SkS_k, SS) are evaluated for many nuclei using "experimental" densities or/and momentum distributions. The results are compared with the harmonic oscillator model and with the short-range correlated distributions. It is found that SrS_r depends strongly on lnA\ln A and does not depend very much on the model. The behaviour of SkS_k is opposite. The various cases we consider can be classified according to either the quantity of the experimental data we use or by the values of SS, i.e., the increase of the quality of the density and of the momentum distributions leads to an increase of the values of SS. In all cases, apart from the linear relation S=a+blnAS=a+b\ln A, the linear relation S=aV+bVlnVS=a_V+b_V \ln V also holds. V is the mean volume of the nucleus. If SS is considered as an ensemble entropy, a relation between AA or VV and the ensemble volume can be found. Finally, comparing different electron scattering experiments for the same nucleus, it is found that the larger the momentum transfer ranges, the larger the information entropy is. It is concluded that SS could be used to compare different experiments for the same nucleus and to choose the most reliable one.Comment: 14 pages, 4 figures, 2 table

    Superscaling and Neutral Current Quasielastic Neutrino-Nucleus Scattering beyond the Relativistic Fermi Gas Model

    Get PDF
    The superscaling analysis is extended to include quasielastic (QE) scattering via the weak neutral current of neutrinos and antineutrinos from nuclei. The scaling function obtained within the coherent density fluctuation model (used previously in calculations of QE inclusive electron and charge-changing (CC) neutrino scattering) is applied to neutral current neutrino and antineutrino scattering with energies of 1 GeV from 12^{12}C with a proton and neutron knockout (u-channel inclusive processes). The results are compared with those obtained using the scaling function from the relativistic Fermi gas model and the scaling function as determined from the superscaling analysis (SuSA) of QE electron scattering.Comment: 10 pages, 6 figures, published in Phys. Rev.

    Study of 6^{6}He+12^{12}C Elastic Scattering Using a Microscopic Optical Potential

    Full text link
    The 6^6He+12^{12}C elastic scattering data at beam energies of 3, 38.3 and 41.6 MeV/nucleon are studied utilizing the microscopic optical potentials obtained by a double-folding procedure and also by using those inherent in the high-energy approximation. The calculated optical potentials are based on the neutron and proton density distributions of colliding nuclei established in an appropriate model for 6^6He and obtained from the electron scattering form factors for 12^{12}C. The depths of the real and imaginary parts of the microscopic optical potentials are considered as fitting parameters. At low energy the volume optical potentials reproduce sufficiently well the experimental data. At higher energies, generally, additional surface terms having form of a derivative of the imaginary part of the microscopic optical potential are needed. The problem of ambiguity of adjusted optical potentials is resolved requiring the respective volume integrals to obey the determined dependence on the collision energy. Estimations of the Pauli blocking effects on the optical potentials and cross sections are also given and discussed. Conclusions on the role of the aforesaid effects and on the mechanism of the considered processes are made.Comment: 12 pages, 9 figures, accepted for publication in Physical Review

    On isovector meson exchange currents in the Bethe-Salpeter approach

    Get PDF
    We investigate the nonrelativistic reduction of the Bethe-Salpeter amplitude for the deuteron electrodisintegration near threshold energies. To this end, two assumptions have been used in the calculations: 1) the static approximation and 2) the one iteration approximation. Within these assumptions it is possible to recover the nonrelativistic result including a systematic extension to relativistic corrections. We find that the so-called pair current term can be constructed from the PP-wave contribution of the deuteron Bethe-Salpeter amplitude. The form factor that enters into the calculation of the pair current is constrained by the manifestly gauge independent matrix elements.Comment: 15 pages, incl. 3 figures, to be published Phys. Rev.

    Superscaling in Nuclei: A Search for Scaling Function Beyond the Relativistic Fermi Gas Model

    Get PDF
    We construct a scaling function f(ψ)f(\psi^{\prime}) for inclusive electron scattering from nuclei within the Coherent Density Fluctuation Model (CDFM). The latter is a natural extension to finite nuclei of the Relativistic Fermi Gas (RFG) model within which the scaling variable ψ\psi^{\prime} was introduced by Donnelly and collaborators. The calculations show that the high-momentum components of the nucleon momentum distribution in the CDFM and their similarity for different nuclei lead to quantitative description of the superscaling in nuclei. The results are in good agreement with the experimental data for different transfer momenta showing superscaling for negative values of ψ\psi^{\prime}, including those smaller than -1.Comment: 16 pages, 5 figures, submitted for publication to Phys. Rev.

    Investigation of the structure and microhardness of Mo-Fe-C coatings obtained by the electron beam injected in the atmosphere

    Get PDF
    In this work 'Mo-Fe-C' coatings fabricated on medium carbon steel by non-vacuum electron beam cladding were investigated. The structure of coatings and transition zones were studied by scanning electron microscopy (SEM). It was shown that an increase of Fe percentage in the cladding mixture led to a decrease of the eutectic volume fraction in the coating and was accompanied by the formation of the gradient structure between the coating and a substrate material. Measurements of microhardness in the cross section of samples revealed that the cladding of a 'Mo-C powder mixture contributed to a 4.5-fold increase of microhardness

    Investigation of the structure and microhardness of Mo-Fe-C coatings obtained by the electron beam injected in the atmosphere

    Get PDF
    In this work 'Mo-Fe-C' coatings fabricated on medium carbon steel by non-vacuum electron beam cladding were investigated. The structure of coatings and transition zones were studied by scanning electron microscopy (SEM). It was shown that an increase of Fe percentage in the cladding mixture led to a decrease of the eutectic volume fraction in the coating and was accompanied by the formation of the gradient structure between the coating and a substrate material. Measurements of microhardness in the cross section of samples revealed that the cladding of a 'Mo-C powder mixture contributed to a 4.5-fold increase of microhardness

    Charge and matter distributions and form factors of light, medium and heavy neutron-rich nuclei

    Get PDF
    Results of charge form factors calculations for several unstable neutron-rich isotopes of light, medium and heavy nuclei (He, Li, Ni, Kr, Sn) are presented and compared to those of stable isotopes in the same isotopic chain. For the lighter isotopes (He and Li) the proton and neutron densities are obtained within a microscopic large-scale shell-model, while for heavier ones Ni, Kr and Sn the densities are calculated in deformed self-consistent mean-field Skyrme HF+BCS method. We also compare proton densities to matter densities together with their rms radii and diffuseness parameter values. Whenever possible comparison of form factors, densities and rms radii with available experimental data is also performed. Calculations of form factors are carried out both in plane wave Born approximation (PWBA) and in distorted wave Born approximation (DWBA). These form factors are suggested as predictions for the future experiments on the electron-radioactive beam colliders where the effect of the neutron halo or skin on the proton distributions in exotic nuclei is planned to be studied and thereby the various theoretical models of exotic nuclei will be tested.Comment: 26 pages, 11 figures, 3 tables, accepted for publication in Phys. Rev.
    corecore