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Superscaling in nuclei: A search for a scaling function beyond the relativistic Fermi gas model
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We construct a scaling functiof(¢') for inclusive electron scattering from nuclei within the coherent
density fluctuation mod€ICDFM). The latter is a natural extension to finite nuclei of the relativistic Fermi gas
model within which the scaling variabl¢’ was introduced by Donnelly and collaborators. The calculations
show that the high-momentum components of the nucleon momentum distribution in the CDFM and their
similarity for different nuclei lead to quantitative description of the superscaling in nuclei. The results are in
good agreement with the experimental data for different transfer momenta showing superscaling for negative
values ofy’, including those smaller than -1.
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l. INTRODUCTION the quasielastic peaky’|<1) and that the superscaling ex-
tends to larger values ofy’| and thus, to the high-

The y scaling in the inclusive scattering of high-energy momentum components of the nucleon momentum distribu-
electrons from nuclei has been actively studied in the lastions in nuclei. The existence of high-momentum
two decadege.g., Refs[1-5], and references thergiffiol- components, and their similarity for different nuclei, is
lowing the idea from Ref[6]. It has been shown both theo- known to be due to the short-range and tensor nucleon-
retically and experimentally that a properly defined functionnucleon correlationgsee, e.g., Refg§15,16, and references
(scaling function depends only on a single variabje the  therein.
latter itself being a function of the transferred momentgm An extended study of scaling of the first and second kinds
and energyw [y=Y(q,w)]. It has been realized that at mo- for inclusive electron scattering from nuclei with emphasis
menta |gq|>500 MeV/c and energiesw at or below the on the transverse response in the region above the quasielas-
quasielastic peak position a nucleon is ejected in a “quastic peak was performed in RefL1]. Approximate scaling of
free” way almost without the effects of the strong interaction.the second kind was observed and its modest breaking was
This scaling is usually called scaling of the first kind. It was supposed to be due to an inelastic version of the usual scal-
shown that the scaling function is sensitive to the high-ing variable. In Ref[12] a unified relativistic approach used
momentum components of the spectral function and nucleoim the case of quasielastic kinematics was applied to the
momentum distribution. Thus its knowledge can provide im-analysis of highly inelastic electron scattering. The complete
portant information about the dynamical ground-state propinelastic spectrum was considered using the inelastic RFG
erties, as well as about the reaction mechanism. model and its phenomenological extension based on direct

The comparison of the scaling functions of various nuclei S —
with mass numbe”A=4 led to the conclusion that these 1.000 L
functions are the sam@,8]. This behavior is called scaling
of the second kind which, together with scaling of the first
kind, leads to superscaling. These studies followed the theo-
retical concept of the superscaling introduced in REFSLO|
considering the properties of the relativistic Fermi gaEG)
model. The analyses of a large body of inclusive scattering i
data for nuclei fromA=4 to A=238 in Refs.[7,8] demon- 0.010 |
strated that the data in the lowside of the quasielastic peak F
exhibit superscaling behavior: the scaling functions are both
independent on the momentum transfer and on the mass
number. In these analyses the Fermi momentum for the RFG 000 e s o s oo os
was used as a physical scale to define the proper scaling '
variabley’ for each nucleus. An example of the superscaling
behavior of the inclusive electron-scattering data fpr FIG. 1. Superscaling behavior of inclusive electron scattering.
~1000 MeV/c and for the*He, **C, ?’Al, *Fe, and™®’Au  The gray area represents experimental dafdor *He, 12C, 27Al,
nuclei is given in Fig. I(the data are taken from Fig. 5 in and 197%Au at q=1000 MeV k. The solid line is the RFG scaling
Ref. [8]). An important conclusion has been drawn in Refs.function calculated using Eq24) with ke=1.191 fnT! from Ref.
[7,8] that this universality is not restricted to the region of [8].
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fits to data, investigating the second-kind scaling behavior akernelsZ(x,x’) and H(x,x’) peak strongly ak~x’' [19,20

well. and can be written in the form:
As emphasized in Refl18], the actual dynamical physics
content of the phenomenon considered is more complex than Z(xX') = Z(xX)G(x = x'), (5
that provided by the RFG framework. In particular, as noted
there, the extension of the superscaling property to large H(X,X) = H(X,X)G(x—X), (6)

negative values o/ (/' <-1) is not predicted by the RFG ) )
model. This is seen in Fig. 1 where we also give a curve ofVherey is peaked ak~x'. It was shown in Ref[18] that
the calculated RFG scaling function which is equal to zerdh€ following &-function approximation for the kernels is
for ' <-1. Thus, it is worth considering the superscaling inValid in the GCM for the case of many-fermion systems
theoretical approaches which go be){ond the R_FG model. Tx,x') — S(x=x'), (7)
One of them is the coherent density fluctuation model

(CDFM) (e.g., Refs[13-16G) which gives a natural exten-

sion of the Fermi-gas case to realistic finite nuclear systems. H(x,X') — —
The main aim of the present work is to see to what extent 2Mg¢
superscaling can be explained using the CDFM. The theoret-
ical scheme is given in Sec. Il, while the results and th
discussion are presented in Sec. lll. The conclusions and t
final remarks are given in Sec. IV.

K2 X+

8'(x—x")+ V(—ZX/ ) dx=x"), (8)

nd that it leads to the Schrddinger-type of equation
8,19,2] with an effective mass dependent on the generator
coordinate(see also Ref.16]).

In the following we use for simplicity only one generator
coordinate. If the trial wave functiow({r;}) in Eq. (1) is
Il. THE THEORETICAL SCHEME normalized to the mass numb&rand the weight function is
A. Basic relationships of the CDFM determined under the condition

The CDFM was suggestdd3] and developel4-17 as f‘” IF(0[2dx= 1 )
a model for studying characteristics of nuclear structure and 0 T
nuclear reactions based on the local density and momentum
distributions as basic variables of the theory and using théhen theds-function approximatior(7) leads to the relation-
essential results of the infinite nuclear matter theory. Theship:
model is related to thé-function limit of the generator co-
ordinate methodGCM) [18]. In the latter the total many- Jq)*({r,} X YDA} x)dry - dr = ASX-X).  (10)
particle wave functionV'({r;}) of a system ofA nucleons is v v ! A

written in a form of a linear combination: Taking into account Eqg5) and(10) it was suggested in the

CDFM that as-function approximation leading to that of Eq.
W(ry, ..o ra) = [ FOXg,  JP(rg, .o FAIX X, ) (10) holds in the case of many-fermion systefid—14:

X dg-ee @ fq)*(r,rz, K AX DD F g, o FaX)dr e dr

where the generating functioh({r;};X;,%,,...) depends on

the radius vectors of the nucleofrs} (spin and isospin vari- = pyx(r,r')8x—x"). (11
ables are implied and on the generator coordinates " . .
X1,X9,... . Thefunction ®@ is usually chosen to be a Slater In Eq. (11) pe,(r.r') is the one-body density matrix corre-

determinant built up from single-particle wave functions cor-SPonding to the wave functio(iri},x) which can be for-
responding to a given construction potential parametrized byally written as

X1,X2,... . Theweight functionF(x;,X,,...) can be deter- A

mined using the variational principle as a solution of the Prx(F, 1) = pylr,r') =—f d(r,ry, ... A X)
Hill-Wheeler integral equation: (D)

XD(r',ry, oo Fp,X)dry---dra. (12

I[H(X'X )~ BZ(xx)JF(x')dx =0. 2) One can see that the integration of Efjl) (atr’=r) overr

using Eq.(12) leads to Eq(10) which is thes-function limit

In Eq. (2) the overlap kernef(x,x’) and the energy kernel for the overlap kernel in the GCM

H(x,x") have the following forms, respectively: In the CDFM the generating functioh({r;},x) describes
T(x,x") = (D{r}, %) D(r},x"), (3) a system corresponding to a piece of nuclear matter with a
' ' one-body density matri¢ODM) of the form
" = ) ¥ Ay iTk ! +r!
H(xX') = (D}, 9 [H|O({r},x)), (4) i 1) 3po(X)Jl[ LT r I]®(X_ Ir+r |> 13
[ke)|r =r"[]

wherei=1,2,... A H is the Hamiltonian of the system and
x denotes a set of;,X,,... . Formany-fermion systems the and uniform density
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px(r) = po(X)O(x=r]), (14)
where
3A
po(X) = et (15)

and the generator coordinatés the radius of a sphere con-
taining all A nucleons in it.

In Eq. (13) j; is the first-order spherical Bessel function
and

37T2 1/3 97A 1/3
k,:(x):<7p0(x)) Eg with a:(%>

~ 1.52AY3 (16)
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obtained by means of a known density distributjgn) for a
given nucleugfrom Eq. (20)]:

_ 1 dp(r)

2 _ _
IF(x)|*= o0 dr |

at dp(r)/dr<0. (23

B. The scaling function in the CDFM

The scaling function in the RFG model expressed by the
variabley/ has the forn8]

1
frea(¥) = 3(1 - 'HO(1 - M?{n% + Y2+ 9t
F

- 2\1+ 721, (24)

is the Fermi momentum of such a piece of nuclear matter.

Using Egs.(1) and (11) the ODM of the system in the

where n=Kkg/my, my being the nucleon mass.

CDFM can be obtained as a superposition of the ODM’s As shown in Ref[8], the relationship betweeff’ and the

from Eq.(13) [13-17:

p(r,r’)= fo dXF(x)[2py(r,r"). (17)

The Wigner distribution function which corresponds to the

ODM from Eq.(17) is

W(r,k) = Jx dX|F(X)|2W,(r k), (18)
0

where

Wy(r k) = ——=0(x = [r)O(ke(x) = [k]). (19

(2 )3
Then the density(r) and the momentum distributiomgk)

in the CDFM are expressed by means of the same weight

function |F(x)|:

p(r):fde(r,k):f0 dx[F(x)|24iis®(x—|r|),

(20)
and
— 2
n(k) = Jer(r k)= 2 )J dX{F(x)| - k(]
4 alk 4
=Wfo dX|F(X)|2§7TX3, (21)
both normalized to the mass number:
fp(r)dr =A fn(k)dk=A. (22)

Different paths can be followed to find the functidf{x).

Here, instead of solving the differential equation from the
s-function approximation to the Hill-Wheeler integral equa-

usualy variable, in the approximation for the mass of the
residual nucIeu:MOA_l—m, is given by the expression

{1+ \/Eé (k )+0[7IF]} (25)

where k=q/2my.

Our basic assumption within the CDFM is that the scaling
function for a finite nucleu$(y/’') can be defined by means of
the weight function|F(x)|?, weighting the scaling function
for the RFG at giverx [i.e., for a given densityy(x) (15)
and Fermi momenturtiL6)]. Thus the scaling functiof(y')
in the CDFM will be an infinite superposition of the RFG
scaling functions [/ (x)].

Let us introduce the notation

y

V=i

(26)

Then one can write from Eq925) and (26), neglecting
O[7?2], the scaling variable(y) corresponding to the rela-
tivistic Fermi gas with the densityy(x) (15 and Fermi mo-
mentumkg(x) (16) in the form

Ply) _ ply)x
P(y) = k0~ « (27)
where for the cases of interest
y(1+cy), y=0
= 28
P {- V(L -cly]), y=<0, |y|<1/(2c). (28)

For further use it is more convenient to introduce the nota-
tion

ke PY) _ ke
ke(X) ke  Ke(x)

b (y) = W (29)

tion (2), we adopt a convenient approach to the weight funcUsing the® function in Eq.(24), the weighted scaling func-

tion F(x) proposed in Refs[13-16. The functionF(x) is

tion for a finite nucleus can be presented by the integral
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TABLE |. Values of the parametei® andb (in fm) used in the
calculations and the results fig (in fm™) obtained in the CDFM.

T

Nuclei R b ke
“He 1.710 0.290 1.201 i
12¢ 2.470 0.420 1.200
2771 23] 3.070 0.519 1.267 S o[
S6Fe [23] 4.111 0.558 1.270 = 1k
197A [24] 6.419 0.449 1.335 i

al (Ke|y' AW
f(lﬂ’):f I(kel/ ) dX|F(X)|2§|:1—(kFXlr/I ) ]
0 4 a

fopofie ey S

2
—2+/1+ (L) } } , (30) FIG. 2. Results for the scaling function in the CDRbblid line)
XMy calculated using Eq$30) and(31) atq=1000 MeV and for*He,
12¢, 27Al1, and 1°7Au (with b=1.0 fm for the lattey compared with
the datagray areafrom Ref.[8]. The dotted line is the RFG result

using Eq.(24). The dashed line in the case ¥fAu corresponds to
the CDFM result witho=0.449 fm.

E

where the momenturk: will not be a fitting parametefas it
is in the RFG modelfor the different nuclei, but will be also
calculated consistently in the CDFM,

ke :f dxk=(x)|F(x)|?= af dx}|F(x)|2 (31) results give a good agreement with the data for the interval
0 o X for ¢ from 0 till 4’ <-1 for all nuclei(including *®Fe which

. . is not shown. The only exception was observed foYAu
for each nucleus, witlx given by Eq.(16). As can be seen using the values of the parameteR=6.419 fm andb

from .Eqs.(:?O)., (29), and.(28) in our approach the, scaling =0.449 fm given in Ref[24], for which the result is shown
functionf(y’) is symmetric at the change ¢f to = upto Fig. 2 by dashed line.
9’| =(4cke) ™, At this point we would like to note that, generally, the
The scaling functiorf(i') has been calculated using Eq. weight function|F(x)|? which is related to the density distri-
(30) by means of the weight functiofF(x)|* determined pution[Eqgs.(20) and(23)], is also related to the momentum
from its relationship to the density distribution(r) [Eq.  distribution [Eq. (21)]. This connects through E@30) the
(23)]. For the latter we used those obtained from experimenscaling functionf(y') with n(k). The deviation off(¢/') from
tal data on electron scattering from nuclei and muonic atomshe data in the case of’Au (b=0.449 fm) is due to the
particularA dependence af(k) in the present approagkgs.
(21) and(23)].

ll. RESULTS OF CALCULATIONS AND DISCUSSION To understand the origin of the agreement for light and
We calculated the scaling functidityy’) (30) for various ~medium nuclei, and of the discrepancy f6FAu with b
nuclei and transfer momenta. A symmetrized diffused Fermf 0-449 fm, we show in Fig. 3 the momentum d'Sztr'bF't'O”S

density distribution has been used fte and*?C [22] anda  N(K) (21) [Fig. 3@] and the weight functiong=(x)|? [Fig.
diffused Fermi distribution for the heavier nuclei. The values3(D)]- As seen in Fig. @), for the **C and*°Ca the CDFM
of the half-radiusR and diffuseness parameteare given in  momentum distributions depend weakly Arand have simi-
Table | together with the results for the CDFM Fermi mo- lar high-momentum(k>1 fm™) tails. Inspection of Egs.
mentumke (31). (21) and (30) [which involve the same weighting function
The results for the scaling function are compared with thdF(X)[°] shows that the interval of interest fa# (-2=< ¢’
experimental data from Ref§7,8] which are given in our <0) corresponds to thk interval O<k=<-2.5 fm* in n(k).
figures by a gray area. In Fig. 2 are presented the results fdrhus the similar high-momentum tails ofk) in the light
the scaling function in the CDFM fog=1000 MeVk and  (*?C) and medium(*°Ca nuclei lead to the similar CDFM
for “He, 12C, 2’Al, and *°’Au. The values of the parametd®s  scaling curves which are in agreement with the superscaling
andb for “He and*C (given in Table } lead to charge rms data.
radii 1.71 fm and 2.47 fm, respectively, which coincide with  The deviation between the CDFM scaling function and
the experimental ongi23]. The values oR andb for /Al data in Fig. 2 for'®’Au (b=0.449 fr takes place af}’' <
are taken from Ref[23]. The results of the CDFM scaling -1 and corresponds to values of the momentu3 fm™.
function(solid lineg are compared with the RFG predictions The CDFM high-momentum tail of’Au for b=0.449 fm is
(dotted lines. In the RGF model, due to th® function in  much smaller than that of light and medium nudlege Fig.
Eq. (24), f(y¢')=0 for ¢/ <-1. As can be seen, the CDFM 3(a)] causing the above mentioned deviation. In Fidp)3ve

044321-4



SUPERSCALING IN NUCLEI: A SEARCH FOR A. PHYSICAL REVIEW C 69, 044321(2004)

can be achieved by taking an effective larger value of the
parameteb in the diffuse Fermi density distribution which is
¥ used to obtain the weight functiolff(x)[> and, hence, the
wememee W AY (b=0.449 fm) § scaling functionf(y’). We take the valueb=1.0 fm, for
N —— Au (b=1.0fm) ? which the high-momentum componentsrgk) in 1°’Au are
] similar to those in light and medium nuclei. This can be seen
in Fig. @) for 1%7Au (solid line). The change of the behavior
of the weight function|F(x)|> which leads to this shape of
n(k) for °7Au can be seen in Fig.(B) (solid line). In this
case the functiorjF(x)|? follows the trend previously ob-
served for light and medium nuclei of decreasing strength
(increasing width with increasingA. The values ofF(x)|?
for 0=x=<5.2 fm determine the behavior of(y’) for
-1.5< ¢’ <-1. As can be seen from Fig(l8 in this region
|F(x)|? is quite different forb=0.449 fm and forb=1.0 fm.
The results of the calculations of the scaling function for
197Au with b=1.0 fm are presented in Fig. 2 by a solid line
and, as can be seen, they are in good agreement with the
data. This confirms the view that the behavior of the scaling
function is related to the properties of the momentum distri-
(1) J— ‘He 1 bution at large values df (k>1.5 fm!), and that the simi-
______ 20 | larity of the high-momentum tails af(k) leads to the scaling
i of second kind.
_____ AU (b=0.449 fm) Here we would like to note that the use of ar_l_e_ffective
AL (b=1.0m) T value ofb for *%/Au can be merely seen as an artificial pro-
’ . cedure to improve thé dependence dii(k) for the heaviest
. nucleus. This shows what would be the results of the CDFM
1 for the scaling function when the high-momentum tails of
n(k) are realistic, even for the heaviest nucleus, and are simi-
lar to those of light and medium nuclei. We do not imply that
] the actual diffuseness of the density distribution'&fAu
J should be that large. However, it is also worth pointing out
; that all the nucleons may contribute to the scaling function
. for the transverse electron scattering and that the diffuseness
of the mass density for a nucleus likR&Au may be larger
16 than that of the charge density.
The results for the scaling function in the CDFM in the
case ofq=1650 MeV [ are given in Fig. 4 for*He and
FIG. 3. (a) Nucleon momentum distribution(k) calculated in “7Au [the latter V\."th |mpr0ved' high-momentum tail D'fk)].
the CDFM using Eqs(21) and (23) for 1C, “Ca, and¥’Au (for and compared with the experlmegstal data taker_1 from_ Fig. 6
the latter withb=0.449 fm ancb=1.0 fm); (b) the weight function ~ ©f Ref.[8]. The curves for“C and*Fe are not given since

IF(x)|? of the CDFM calculated using Eq23) for *He, 12C, “’Ca, they are similar, in agreement with_ the. data. _
and 197Au (for the latter withb=0.449 fm andb=1.0 fm). The result for the scaling function in the CDFM in the

case ofg=500 MeV/c for 12C is given in Fig. 5. This result

. ; - 2 . is also in good agreement with the experimental datayfior
give also the weight functioff(x)|” calculated in the CDFM the interval from 500 to 600 Me\W/ given in Fig. 8 of Ref.

for “He, 12C, °Ca, and®’Au using Eq.(23) and the corre- g
sponding density distributions mentioned above. As can be ]
seen|F(x)|? is a one-peak function which fdiHe, 1°C, and
40ca follows a particular trend with increasing. The
strength of the peak decreasgonsequently its width in-
creasep with increasingA, and the peak is displaced to
higher x values. This trend is broken by the behavior of
|F(x)|? for 1%/Au when we takeb=0.449 fm.

To improve theA dependence of the momentum distribu-
tion in the CDFM for the heaviest nucleus, we use a proce- The results of the present work can be summarized as
dure that may be somewhat artificial but which is useful tofollows.
show the role of the obtained, more realistic, new high- (i) We propose an extension of the RFG model to calcu-
momentum components afk) on the scaling function. This late the scaling functioffi(¢’) in finite nuclei within the co-
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One can see in Figs. 2 and 4 that the CDFM results tend
to overestimate the data in the interval =%’ <-0.5. We
note that the origin of this is related to the predictions of the
RFG model in the same region, as can be seen in Fig. 1.

IV. CONCLUSIONS AND FINAL REMARKS
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FIG. 4. Results of the CDFM for the superscaling functions of FIG. 5. Results of the CDFM for the superscaling function of
“He (solid line) and °7Au (dashed ling at g=1650 MeV/ com-  12C atq=500 MeV/c (solid line) compared with the experimental
pared with the experimental datgray areafrom Ref. [8]. data(gray areafor q in the interval from 500 to 600 Me\¢/from

Ref. [8].
herent density fluctuation mod€lCDFM). In this model [®]

f(y/) is a weighted superposition of scaling functions for, . -
relativistic Fermi gases with different densities. The Weight'o_r of the hlgh-momen'Fum.cor.nponents k) in light, me-
function is calculated using the known charge density distridium, and heavy nuclei which is known to be due to the short
butions in nuclei. range and tensor correlations in nuclei. This suggests an al-
(") We calculate the Sca”ng functia‘mw’) for inclusive ternative path for deﬁning the We|ght functi@(x) within
electron scattering fofHe ,12C,27Al, %%Fe, and!®’Au nuclei ~ the generator coordinate method: a path in whigh) is
and for various values of the transfer momentigs=1650,  built up from a phenomenological or a theoretical momen-
1000, and 500 MeWd. The results agree with the available tum distribution.
experimental data at different transferred momenta, and en-
ergies below the quasielastic peak position, showing super-
scaling for negative values @f including also those smaller ACKNOWLEDGMENTS
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