
Superscaling in nuclei: A search for a scaling function beyond the relativistic Fermi gas model

A. N. Antonov,1,2 M. K. Gaidarov,1 D. N. Kadrev,1 M. V. Ivanov,1 E. Moya de Guerra,3 and J. M. Udias2
1Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria

2Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid,
Madrid E-28040, Spain

3Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain
(Received 20 February 2004; published 30 April 2004)

We construct a scaling functionfsc8d for inclusive electron scattering from nuclei within the coherent
density fluctuation model(CDFM). The latter is a natural extension to finite nuclei of the relativistic Fermi gas
model within which the scaling variablec8 was introduced by Donnelly and collaborators. The calculations
show that the high-momentum components of the nucleon momentum distribution in the CDFM and their
similarity for different nuclei lead to quantitative description of the superscaling in nuclei. The results are in
good agreement with the experimental data for different transfer momenta showing superscaling for negative
values ofc8, including those smaller than −1.

DOI: 10.1103/PhysRevC.69.044321 PACS number(s): 25.30.Fj, 21.60.2n, 21.10.Ft, 24.10.Jv

I. INTRODUCTION

The y scaling in the inclusive scattering of high-energy
electrons from nuclei has been actively studied in the last
two decades(e.g., Refs.[1–5], and references therein) fol-
lowing the idea from Ref.[6]. It has been shown both theo-
retically and experimentally that a properly defined function
(scaling function) depends only on a single variabley, the
latter itself being a function of the transferred momentumq
and energyv fy=ysq,vdg. It has been realized that at mo-
menta uqu.500 MeV/c and energiesv at or below the
quasielastic peak position a nucleon is ejected in a “quasi-
free” way almost without the effects of the strong interaction.
This scaling is usually called scaling of the first kind. It was
shown that the scaling function is sensitive to the high-
momentum components of the spectral function and nucleon
momentum distribution. Thus its knowledge can provide im-
portant information about the dynamical ground-state prop-
erties, as well as about the reaction mechanism.

The comparison of the scaling functions of various nuclei
with mass numberAù4 led to the conclusion that these
functions are the same[7,8]. This behavior is called scaling
of the second kind which, together with scaling of the first
kind, leads to superscaling. These studies followed the theo-
retical concept of the superscaling introduced in Refs.[9,10]
considering the properties of the relativistic Fermi gas(RFG)
model. The analyses of a large body of inclusive scattering
data for nuclei fromA=4 to A=238 in Refs.[7,8] demon-
strated that the data in the low-v side of the quasielastic peak
exhibit superscaling behavior: the scaling functions are both
independent on the momentum transfer and on the mass
number. In these analyses the Fermi momentum for the RFG
was used as a physical scale to define the proper scaling
variablec8 for each nucleus. An example of the superscaling
behavior of the inclusive electron-scattering data forq
<1000 MeV/c and for the4He, 12C, 27Al, 56Fe, and197Au
nuclei is given in Fig. 1(the data are taken from Fig. 5 in
Ref. [8]). An important conclusion has been drawn in Refs.
[7,8] that this universality is not restricted to the region of

the quasielastic peaksuc8u,1d and that the superscaling ex-
tends to larger values ofuc8u and thus, to the high-
momentum components of the nucleon momentum distribu-
tions in nuclei. The existence of high-momentum
components, and their similarity for different nuclei, is
known to be due to the short-range and tensor nucleon-
nucleon correlations(see, e.g., Refs.[15,16], and references
therein).

An extended study of scaling of the first and second kinds
for inclusive electron scattering from nuclei with emphasis
on the transverse response in the region above the quasielas-
tic peak was performed in Ref.[11]. Approximate scaling of
the second kind was observed and its modest breaking was
supposed to be due to an inelastic version of the usual scal-
ing variable. In Ref.[12] a unified relativistic approach used
in the case of quasielastic kinematics was applied to the
analysis of highly inelastic electron scattering. The complete
inelastic spectrum was considered using the inelastic RFG
model and its phenomenological extension based on direct

FIG. 1. Superscaling behavior of inclusive electron scattering.
The gray area represents experimental data[8] for 4He, 12C, 27Al,
and 197Au at q=1000 MeV/c. The solid line is the RFG scaling
function calculated using Eq.(24) with kF=1.191 fm−1 from Ref.
[8].
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fits to data, investigating the second-kind scaling behavior as
well.

As emphasized in Ref.[18], the actual dynamical physics
content of the phenomenon considered is more complex than
that provided by the RFG framework. In particular, as noted
there, the extension of the superscaling property to large
negative values ofc8sc8,−1d is not predicted by the RFG
model. This is seen in Fig. 1 where we also give a curve of
the calculated RFG scaling function which is equal to zero
for c8ø−1. Thus, it is worth considering the superscaling in
theoretical approaches which go beyond the RFG model.
One of them is the coherent density fluctuation model
(CDFM) (e.g., Refs.[13–16]) which gives a natural exten-
sion of the Fermi-gas case to realistic finite nuclear systems.
The main aim of the present work is to see to what extent
superscaling can be explained using the CDFM. The theoret-
ical scheme is given in Sec. II, while the results and the
discussion are presented in Sec. III. The conclusions and the
final remarks are given in Sec. IV.

II. THE THEORETICAL SCHEME

A. Basic relationships of the CDFM

The CDFM was suggested[13] and developed[14–17] as
a model for studying characteristics of nuclear structure and
nuclear reactions based on the local density and momentum
distributions as basic variables of the theory and using the
essential results of the infinite nuclear matter theory. The
model is related to thed-function limit of the generator co-
ordinate method(GCM) [18]. In the latter the total many-
particle wave functionCshr ijd of a system ofA nucleons is
written in a form of a linear combination:

Csr 1, . . . ,r Ad =E Fsx1,x2, . . .dFsr 1, . . . ,r A;x1,x2, . . .d

3dx1 dx2 ¯ , s1d

where the generating functionFshr ij ;x1,x2, . . .d depends on
the radius vectors of the nucleonshr ij sspin and isospin vari-
ables are impliedd and on the generator coordinates
x1,x2, . . . . Thefunction F is usually chosen to be a Slater
determinant built up from single-particle wave functions cor-
responding to a given construction potential parametrized by
x1,x2, . . . . The weight function Fsx1,x2, . . .d can be deter-
mined using the variational principle as a solution of the
Hill-Wheeler integral equation:

E fHsx,x8d − EIsx,x8dgFsx8ddx8 = 0. s2d

In Eq. s2d the overlap kernelIsx,x8d and the energy kernel
Hsx,x8d have the following forms, respectively:

Isx,x8d = kFshr ij,xduFshr ij,x8dl, s3d

Hsx,x8d = kFshr ij,xduĤuFshr ij,x8dl, s4d

wherei =1,2, . . . ,A, Ĥ is the Hamiltonian of the system and
x denotes a set ofx1,x2, . . . . Formany-fermion systems the

kernelsIsx,x8d andHsx,x8d peak strongly atx,x8 f19,20g
and can be written in the form:

Isx,x8d . Isx,xdGsx − x8d, s5d

Hsx,x8d . Hsx,xdGsx − x8d, s6d

whereG is peaked atx,x8. It was shown in Ref.f18g that
the following d-function approximation for the kernels is
valid in the GCM for the case of many-fermion systems

Isx,x8d → dsx − x8d, s7d

Hsx,x8d → −
"2

2mef f
d9sx − x8d + VSx + x8

2
Ddsx − x8d, s8d

and that it leads to the Schrödinger-type of equation
f18,19,21g with an effective mass dependent on the generator
coordinatessee also Ref.f16gd.

In the following we use for simplicity only one generator
coordinate. If the trial wave functionCshr ijd in Eq. (1) is
normalized to the mass numberA and the weight function is
determined under the condition

E
0

`

uFsxdu2dx= 1, s9d

then thed-function approximations7d leads to the relation-
ship:

E F*shr ij,x8dFshr ij,xddr 1 ¯ dr A = Adsx − x8d. s10d

Taking into account Eqs.s5d ands10d it was suggested in the
CDFM that ad-function approximation leading to that of Eq.
s10d holds in the case of many-fermion systemsf14–16g:

E F*sr ,r 2, . . . ,r A,x8dFsr 8,r 2, . . . ,r A,xddr 2 ¯ dr A

> rx,xsr ,r 8ddsx − x8d. s11d

In Eq. s11d rx,xsr ,r 8d is the one-body density matrix corre-
sponding to the wave functionFshr ij ,xd which can be for-
mally written as

rx,xsr ,r 8d ; rxsr ,r 8d =
A

kFuFl
E F*sr ,r 2, . . . ,r A,xd

3Fsr 8,r 2, . . . ,r A,xddr 2 ¯ dr A. s12d

One can see that the integration of Eq.s11d sat r 8=r d over r
using Eq.s12d leads to Eq.s10d which is thed-function limit
for the overlap kernel in the GCM.

In the CDFM the generating functionFshr ij ,xd describes
a system corresponding to a piece of nuclear matter with a
one-body density matrix(ODM) of the form

rxsr ,r 8d = 3r0sxd
j1fkFsxdur − r 8ug
fkFsxdur − r 8ug

QSx −
ur + r 8u

2
D s13d

and uniform density
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rxsr d = r0sxdQsx − ur ud, s14d

where

r0sxd =
3A

4px3 , s15d

and the generator coordinatex is the radius of a sphere con-
taining all A nucleons in it.

In Eq. (13) j1 is the first-order spherical Bessel function
and

kFsxd = S3p2

2
r0sxdD1/3

;
a

x
with a = S9pA

8
D1/3

. 1.52A1/3 s16d

is the Fermi momentum of such a piece of nuclear matter.
Using Eqs. s1d and s11d the ODM of the system in the
CDFM can be obtained as a superposition of the ODM’s
from Eq. s13d f13–17g:

rsr ,r 8d =E
0

`

dxuFsxdu2rxsr ,r 8d. s17d

The Wigner distribution function which corresponds to the
ODM from Eq. s17d is

Wsr ,kd =E
0

`

dxuFsxdu2Wxsr ,kd, s18d

where

Wxsr ,kd =
4

s2pd3Usx − ur udUskFsxd − uk ud. s19d

Then the densityrsr d and the momentum distributionsnskd
in the CDFM are expressed by means of the same weight
function uFsxdu2:

rsr d =E dkWsr ,kd =E
0

`

dxuFsxdu2
3A

4px3Qsx − ur ud,

s20d

and

nskd =E drWsr ,kd =
4

s2pd3E
0

`

dxuFsxdu2
4px3

3
QfkFsxd − uk ug

=
4

s2pd3E
0

a/k

dxuFsxdu2
4

3
px3, s21d

both normalized to the mass number:

E rsr ddr = A, E nskddk = A. s22d

Different paths can be followed to find the functionFsxd.
Here, instead of solving the differential equation from the
d-function approximation to the Hill-Wheeler integral equa-
tion s2d, we adopt a convenient approach to the weight func-
tion Fsxd proposed in Refs.f13–16g. The functionFsxd is

obtained by means of a known density distributionrsrd for a
given nucleusffrom Eq. s20dg:

uFsxdu2 = −U 1

r0sxd
drsrd

dr
U

r=x
, at drsrd/dr ø 0. s23d

B. The scaling function in the CDFM

The scaling function in the RFG model expressed by the
variablec8 has the form[8]

fRFGsc8d = 3
4s1 − c82dQs1 − c82d

1

hF
2 hhF

2 + c82f2 + hF
2

− 2Î1 + hF
2gj, s24d

wherehF=kF /mN, mN being the nucleon mass.
As shown in Ref.[8], the relationship betweenc8 and the

usual y variable, in the approximation for the mass of the
residual nucleusMA−1

0 →`, is given by the expression

c8 =
y

kF
F1 +Î1 +

1

4k2

1

2
hFS y

kF
D + OfhF

2gG , s25d

wherek=q/2mN.
Our basic assumption within the CDFM is that the scaling

function for a finite nucleusfsc8d can be defined by means of
the weight functionuFsxdu2, weighting the scaling function
for the RFG at givenx [i.e., for a given densityr0sxd (15)
and Fermi momentum(16)]. Thus the scaling functionfsc8d
in the CDFM will be an infinite superposition of the RFG
scaling functionsffc8sxdg.

Let us introduce the notation

c ;
1

2mN
Î1 +

1

4k2 . s26d

Then one can write from Eqs.s25d and s26d, neglecting
OfhF

2g, the scaling variablecx8syd corresponding to the rela-
tivistic Fermi gas with the densityr0sxd s15d and Fermi mo-
mentumkFsxd s16d in the form

cx8syd =
psyd
kFsxd

=
psydx

a
, s27d

where for the cases of interest

psyd = Hys1 + cyd, y ù 0

− uyus1 − cuyud, y ø 0, uyu ø 1/s2cd.
s28d

For further use it is more convenient to introduce the nota-
tion

cx8syd =
kF

kFsxd
psyd
kF

=
kF

kFsxd
c8. s29d

Using theQ function in Eq.s24d, the weighted scaling func-
tion for a finite nucleus can be presented by the integral
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fsc8d =E
0

a/skFuc8ud
dxuFsxdu2

3

4
F1 −SkFxc8

a
D2G

3H1 +SxmN

a
D2SkFxc8

a
D2F2 +S a

xmN
D2

− 2Î1 +S a

xmN
D2GJ , s30d

where the momentumkF will not be a fitting parametersas it
is in the RFG modeld for the different nuclei, but will be also
calculated consistently in the CDFM,

kF =E
0

`

dxkFsxduFsxdu2 = aE
0

`

dx
1

x
uFsxdu2 s31d

for each nucleus, witha given by Eq.s16d. As can be seen
from Eqs. s30d, s29d, and s28d in our approach the scaling
function fsc8d is symmetric at the change ofc8 to −c8 up to
uc8u=s4ckFd−1.

The scaling functionfsc8d has been calculated using Eq.
(30) by means of the weight functionuFsxdu2 determined
from its relationship to the density distributionrsrd [Eq.
(23)]. For the latter we used those obtained from experimen-
tal data on electron scattering from nuclei and muonic atoms.

III. RESULTS OF CALCULATIONS AND DISCUSSION

We calculated the scaling functionfsc8d (30) for various
nuclei and transfer momenta. A symmetrized diffused Fermi
density distribution has been used for4He and12C [22] and a
diffused Fermi distribution for the heavier nuclei. The values
of the half-radiusR and diffuseness parameterb are given in
Table I together with the results for the CDFM Fermi mo-
mentumkF (31).

The results for the scaling function are compared with the
experimental data from Refs.[7,8] which are given in our
figures by a gray area. In Fig. 2 are presented the results for
the scaling function in the CDFM forq=1000 MeV/c and
for 4He, 12C, 27Al, and 197Au. The values of the parametersR
andb for 4He and12C (given in Table I) lead to charge rms
radii 1.71 fm and 2.47 fm, respectively, which coincide with
the experimental ones[23]. The values ofR andb for 27Al
are taken from Ref.[23]. The results of the CDFM scaling
function (solid lines) are compared with the RFG predictions
(dotted lines). In the RGF model, due to theQ function in
Eq. (24), fsc8d=0 for c8ø−1. As can be seen, the CDFM

results give a good agreement with the data for the interval
for c8 from 0 till c8,−1 for all nuclei(including 56Fe which
is not shown). The only exception was observed for197Au
using the values of the parametersR=6.419 fm and b
=0.449 fm given in Ref.[24], for which the result is shown
in Fig. 2 by dashed line.

At this point we would like to note that, generally, the
weight functionuFsxdu2 which is related to the density distri-
bution [Eqs.(20) and(23)], is also related to the momentum
distribution [Eq. (21)]. This connects through Eq.(30) the
scaling functionfsc8d with nskd. The deviation offsc8d from
the data in the case of197Au sb=0.449 fmd is due to the
particularA dependence ofnskd in the present approach[Eqs.
(21) and (23)].

To understand the origin of the agreement for light and
medium nuclei, and of the discrepancy for197Au with b
=0.449 fm, we show in Fig. 3 the momentum distributions
nskd (21) [Fig. 3(a)] and the weight functionsuFsxdu2 [Fig.
3(b)]. As seen in Fig. 3(a), for the 12C and40Ca the CDFM
momentum distributions depend weakly onA and have simi-
lar high-momentumsk.1 fm−1d tails. Inspection of Eqs.
(21) and (30) [which involve the same weighting function
uFsxdu2] shows that the interval of interest forc8s−2øc8
ø0d corresponds to thek interval 0økø−2.5 fm−1 in nskd.
Thus the similar high-momentum tails ofnskd in the light
s12Cd and mediums40Cad nuclei lead to the similar CDFM
scaling curves which are in agreement with the superscaling
data.

The deviation between the CDFM scaling function and
data in Fig. 2 for197Au sb=0.449 fmd takes place atc8ø
−1 and corresponds to values of the momentumkù3 fm−1.
The CDFM high-momentum tail of197Au for b=0.449 fm is
much smaller than that of light and medium nuclei[see Fig.
3(a)] causing the above mentioned deviation. In Fig. 3(b) we

TABLE I. Values of the parametersR andb (in fm) used in the
calculations and the results forkF (in fm−1) obtained in the CDFM.

Nuclei R b kF

4He 1.710 0.290 1.201
12C 2.470 0.420 1.200
27Al [23] 3.070 0.519 1.267
56Fe [23] 4.111 0.558 1.270
197Au [24] 6.419 0.449 1.335

FIG. 2. Results for the scaling function in the CDFM(solid line)
calculated using Eqs.(30) and(31) at q=1000 MeV/c and for4He,
12C, 27Al, and 197Au (with b=1.0 fm for the latter) compared with
the data(gray area) from Ref.[8]. The dotted line is the RFG result
using Eq.(24). The dashed line in the case of197Au corresponds to
the CDFM result withb=0.449 fm.
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give also the weight functionuFsxdu2 calculated in the CDFM
for 4He, 12C, 40Ca, and197Au using Eq.(23) and the corre-
sponding density distributions mentioned above. As can be
seenuFsxdu2 is a one-peak function which for4He, 12C, and
40Ca follows a particular trend with increasingA. The
strength of the peak decreases(consequently its width in-
creases) with increasingA, and the peak is displaced to
higher x values. This trend is broken by the behavior of
uFsxdu2 for 197Au when we takeb=0.449 fm.

To improve theA dependence of the momentum distribu-
tion in the CDFM for the heaviest nucleus, we use a proce-
dure that may be somewhat artificial but which is useful to
show the role of the obtained, more realistic, new high-
momentum components ofnskd on the scaling function. This

can be achieved by taking an effective larger value of the
parameterb in the diffuse Fermi density distribution which is
used to obtain the weight functionuFsxdu2 and, hence, the
scaling function fsc8d. We take the valueb=1.0 fm, for
which the high-momentum components ofnskd in 197Au are
similar to those in light and medium nuclei. This can be seen
in Fig. 3(a) for 197Au (solid line). The change of the behavior
of the weight functionuFsxdu2 which leads to this shape of
nskd for 197Au can be seen in Fig. 3(b) (solid line). In this
case the functionuFsxdu2 follows the trend previously ob-
served for light and medium nuclei of decreasing strength
(increasing width) with increasingA. The values ofuFsxdu2
for 0øxø5.2 fm determine the behavior offsc8d for
−1.5,c8,−1. As can be seen from Fig. 3(b) in this region
uFsxdu2 is quite different forb=0.449 fm and forb=1.0 fm.
The results of the calculations of the scaling function for
197Au with b=1.0 fm are presented in Fig. 2 by a solid line
and, as can be seen, they are in good agreement with the
data. This confirms the view that the behavior of the scaling
function is related to the properties of the momentum distri-
bution at large values ofk sk.1.5 fm−1d, and that the simi-
larity of the high-momentum tails ofnskd leads to the scaling
of second kind.

Here we would like to note that the use of an effective
value ofb for 197Au can be merely seen as an artificial pro-
cedure to improve theA dependence ofnskd for the heaviest
nucleus. This shows what would be the results of the CDFM
for the scaling function when the high-momentum tails of
nskd are realistic, even for the heaviest nucleus, and are simi-
lar to those of light and medium nuclei. We do not imply that
the actual diffuseness of the density distribution of197Au
should be that large. However, it is also worth pointing out
that all the nucleons may contribute to the scaling function
for the transverse electron scattering and that the diffuseness
of the mass density for a nucleus like197Au may be larger
than that of the charge density.

The results for the scaling function in the CDFM in the
case ofq=1650 MeV/c are given in Fig. 4 for4He and
197Au [the latter with improved high-momentum tail ofnskd]
and compared with the experimental data taken from Fig. 6
of Ref. [8]. The curves for12C and56Fe are not given since
they are similar, in agreement with the data.

The result for the scaling function in the CDFM in the
case ofq=500 MeV/c for 12C is given in Fig. 5. This result
is also in good agreement with the experimental data forq in
the interval from 500 to 600 MeV/c given in Fig. 8 of Ref.
[8].

One can see in Figs. 2 and 4 that the CDFM results tend
to overestimate the data in the interval −1øc8ø−0.5. We
note that the origin of this is related to the predictions of the
RFG model in the same region, as can be seen in Fig. 1.

IV. CONCLUSIONS AND FINAL REMARKS

The results of the present work can be summarized as
follows.

(i) We propose an extension of the RFG model to calcu-
late the scaling functionfsc8d in finite nuclei within the co-

FIG. 3. (a) Nucleon momentum distributionnskd calculated in
the CDFM using Eqs.(21) and (23) for 12C, 40Ca, and197Au (for
the latter withb=0.449 fm andb=1.0 fm); (b) the weight function
uFsxdu2 of the CDFM calculated using Eq.(23) for 4He, 12C, 40Ca,
and 197Au (for the latter withb=0.449 fm andb=1.0 fm).
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herent density fluctuation model(CDFM). In this model
fsc8d is a weighted superposition of scaling functions for
relativistic Fermi gases with different densities. The weight
function is calculated using the known charge density distri-
butions in nuclei.

(ii ) We calculate the scaling functionfsc8d for inclusive
electron scattering for4He,12C,27Al, 56Fe, and197Au nuclei
and for various values of the transfer momentumuqu=1650,
1000, and 500 MeV/c. The results agree with the available
experimental data at different transferred momenta, and en-
ergies below the quasielastic peak position, showing super-
scaling for negative values ofc8 including also those smaller
than −1. This is an improvement over the RFG model pre-
dictions where the scaling function becomes abruptly zero
beyonduc8u=−1.

(iii ) The sensitivity of the scaling function to the high-
momentum components of the momentum distribution is
analyzed in detail, especially so on the example of the197Au
nucleus.

(iv) The scaling function obtained is symmetrical around
c8=0 up to uc8u=s4ckFd−1. It would also be interesting to
search for models predicting an asymmetrical superscaling
function fsc8d as the phenomenological one obtained by Ref.
[25] and discussed in Ref.[12].

It is shown in our work that the superscaling in nuclei can
be explained quantitatively on the basis of the similar behav-

ior of the high-momentum components ofnskd in light, me-
dium, and heavy nuclei which is known to be due to the short
range and tensor correlations in nuclei. This suggests an al-
ternative path for defining the weight functionFsxd within
the generator coordinate method: a path in whichFsxd is
built up from a phenomenological or a theoretical momen-
tum distribution.

ACKNOWLEDGMENTS

One of the authors(A.N.A.) is grateful for warm hospi-
tality to the Faculty of Physics of the Complutense Univer-
sity of Madrid and for support during his stay there to the
State Secretariat of Education and Universities of Spain
(N.Ref.SAB2001-0030). Four of the authors (A.N.A.,
M.K.G., D.N.K., and M.V.I.) are thankful to the Bulgarian
National Science Foundation for partial support under the
Contract No.F-905. This work was partly supported by
funds provided by DGI of MCyT(Spain) under Contract
Nos. BFM 2002-03562, BFM 2000-0600, and BFM 2003-
04147-C02-01 and by the Agreement(2004 BG2004) be-
tween the CSIC(Spain) and the Bulgarian Academy of Sci-
ences.

[1] D. Day, J. S. McCarthy, T. W. Donnelly, and I. Sick, Annu.
Rev. Nucl. Part. Sci.40, 357 (1990).

[2] I. Sick, D. Day, and J. S. McCarthy, Phys. Rev. Lett.45, 871
(1980).

[3] E. Pace and G. Salme, Phys. Lett.110B, 441 (1982).
[4] C. Ciofi degli Atti, E. Pace, and G. Salme, Phys. Lett.127B,

303 (1983); Phys. Rev. C43, 1155(1991).
[5] C. Ciofi degli Atti and G. B. West, Phys. Lett. B458, 447

(1999).
[6] G. B. West, Phys. Rep., Phys. Lett.18C, 263 (1975).
[7] T. W. Donnelly and I. Sick, Phys. Rev. Lett.82, 3212(1999).
[8] T. W. Donnelly and I. Sick, Phys. Rev. C60, 065502(1999).
[9] W. M. Alberico, A. Molinari, T. W. Donnelly, E. L. Kronen-

berg, and J. W. Van Orden, Phys. Rev. C38, 1801(1988).
[10] M. B. Barbaro, R. Cenni, A. De Pace, T. W. Donnelly, and A.

Molinari, Nucl. Phys.A643, 137 (1998).

FIG. 5. Results of the CDFM for the superscaling function of
12C at q=500 MeV/c (solid line) compared with the experimental
data(gray area) for q in the interval from 500 to 600 MeV/c from
Ref. [8].

FIG. 4. Results of the CDFM for the superscaling functions of
4He (solid line) and 197Au (dashed line) at q=1650 MeV/c com-
pared with the experimental data(gray area) from Ref. [8].

A. N. ANTONOV et al. PHYSICAL REVIEW C 69, 044321(2004)

044321-6



[11] C. Maieron, T. W. Donnelly, and I. Sick, Phys. Rev. C65,
025502(2002).

[12] M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and C.
Maieron, Phys. Rev. C69, 035213(2004).

[13] A. N. Antonov, V. A. Nikolaev, and I. Zh. Petkov, Bulg. J.
Phys. 6, 151 (1979); Z. Phys. A 297, 257 (1980); 304, 239
(1982).

[14] A. N. Antonov, V. A. Nikolaev, and I. Zh. Petkov, Nuovo
Cimento Soc. Ital. Fis., A86A, 23 (1985).

[15] A. N. Antonov, P. E. Hodgson, and I. Zh. Petkov,Nucleon
Momentum and Density Distributions in Nuclei(Clarendon
Press, Oxford, 1988).

[16] A. N. Antonov, P. E. Hodgson, and I. Zh. Petkov,Nucleon
Correlations in Nuclei(Springer-Verlag, Berlin, 1993).

[17] A. N. Antonov, Chr. V. Christov, E. N. Nikolov, I. Zh. Petkov,

and P. E. Hodgson, Nuovo Cimento Soc. Ital. Fis., A102A,
1701 (1989); A. N. Antonov, D. N. Kadrev, and P. E. Hodg-
son, Phys. Rev. C50, 164 (1994).

[18] J. J. Griffin and J. A. Wheeler, Phys. Rev.108, 311 (1957).
[19] K. Wildermuth and Y. C. Tang,A Unified Theory of the

Nucleus(Vieweg, Braunschweig, 1977).
[20] W. Bauhoff, Ann. Phys.(N.Y.) 130, 307 (1980).
[21] P. A. M. Dirac, Proc. Cambridge Philos. Soc.26, 376 (1930).
[22] V. V. Burov, D. N. Kadrev, V. K. Lukyanov, and Yu. S. Pol’,

Phys. At. Nucl. 61, 525 (1998).
[23] H. De Vries, C. W. De Jager, and C. De Vries, At. Data Nucl.

Data Tables36, 495 (1987).
[24] J. D. Patterson and R. J. Peterson, Nucl. Phys.A717, 235

(2003).
[25] J. Jourdan, Nucl. Phys.A603, 117 (1996).

SUPERSCALING IN NUCLEI: A SEARCH FOR A… PHYSICAL REVIEW C 69, 044321(2004)

044321-7


