The 6He+12C elastic scattering data at beam energies of 3, 38.3 and
41.6 MeV/nucleon are studied utilizing the microscopic optical potentials
obtained by a double-folding procedure and also by using those inherent in the
high-energy approximation. The calculated optical potentials are based on the
neutron and proton density distributions of colliding nuclei established in an
appropriate model for 6He and obtained from the electron scattering form
factors for 12C. The depths of the real and imaginary parts of the
microscopic optical potentials are considered as fitting parameters. At low
energy the volume optical potentials reproduce sufficiently well the
experimental data. At higher energies, generally, additional surface terms
having form of a derivative of the imaginary part of the microscopic optical
potential are needed. The problem of ambiguity of adjusted optical potentials
is resolved requiring the respective volume integrals to obey the determined
dependence on the collision energy. Estimations of the Pauli blocking effects
on the optical potentials and cross sections are also given and discussed.
Conclusions on the role of the aforesaid effects and on the mechanism of the
considered processes are made.Comment: 12 pages, 9 figures, accepted for publication in Physical Review