374 research outputs found
Two-Color Bright Squeezed Vacuum
In a strongly pumped non-degenerate traveling-wave OPA, we produce two-color
squeezed vacuum with up to millions of photons per pulse. Our approach to
registering this macroscopic quantum state is direct detection of a large
number of transverse and longitudinal modes, which is achieved by making the
detection time and area much larger than the coherence time and area,
respectively. Using this approach, we obtain a record value of twin-beam
squeezing for direct detection of bright squeezed vacuum. This makes direct
detection of macroscopic squeezed vacuum a practical tool for quantum
information applications.Comment: 4 pages, 4 figure
High-visibility multi-photon interference of Hanbury Brown - Twiss type for classical light
Difference-phase (or Hanbury Brown - Twiss type) intensity interference of
classical light is considered in higher orders in the intensity. It is shown
that, while the visibility of sum-phase (NOON-type) interference for classical
sources drops with the order of interference, the visibility of
difference-phase interference has opposite behavior. For three-photon and
four-photon interference of two coherent sources, the visibility can be as high
as 81.8% and 94.4%, respectively. High-visibility three-photon and four-photon
interference of space-time and polarization types has been observed in
experiment, for both coherent and pseudo-thermal light.Comment: 11 pages, 9 figure
Polarization-Entangled Light Pulses of 10^5 Photons
We experimentally demonstrate polarization entanglement for squeezed vacuum
pulses containing more than 10^5 photons. We also study photon-number
entanglement by calculating the Schmidt number and measuring its operational
counterpart. Theoretically, our pulses are the more entangled the brighter they
are. This promises important applications in quantum technologies, especially
photonic quantum gates and quantum memories.Comment: 8 pages, 6 figure
Possibility of local pair existence in optimally doped SmFeAsO(1-x) in pseudogap regime
We report the analysis of pseudogap Delta* derived from resistivity
experiments in FeAs-based superconductor SmFeAsO(0.85), having a critical
temperature T_c = 55 K. Rather specific dependence Delta*(T) with two
representative temperatures followed by a minimum at about 120 K was observed.
Below T_s = 147 K, corresponding to the structural transition in SmFeAsO,
Delta*(T) decreases linearly down to the temperature T_AFM = 133 K. This last
peculiarity can likely be attributed to the antiferromagnetic (AFM) ordering of
Fe spins. It is believed that the found behavior can be explained in terms of
Machida, Nokura, and Matsubara (MNM) theory developed for the AFM
superconductors.Comment: 5 pages, 2 figure
Recommended from our members
Noble gases from the interstellar medium trapped on the MIR space station and analyzed by in vacuo etching
Introduction: The composition of the present interstellar medium (ISM) provides an important benchmark in cosmochemistry. It serves as a reference for galactic chemical evolution (GCE) models, solar mixing predictions and provides information for understanding Big Bang nucleosynthesis. The present-day ISM 3He abundance allows, combined with the protosolar 3He, deduced from the Jovian atmosphere or meteorites [1,2], tracing the GCE over the past 4.56 Ga. 3He/4He = (2.5 0.6) x 10-4 has been determined for the local ISM [3]. However, the uncertainty is too large to better constrain GCE models and - in combination with the present-day solar wind value - the protosolar D/H [4]
Invariant description of solutions of hydrodynamic type systems in hodograph space: hydrodynamic surfaces
Hydrodynamic surfaces are solutions of hydrodynamic type systems viewed as
non-parametrized submanifolds of the hodograph space. We propose an invariant
differential-geometric characterization of hydrodynamic surfaces by expressing
the curvature form of the characteristic web in terms of the reciprocal
invariants.Comment: 12 page
Arbitrary-order lensless ghost imaging with thermal light
Arbitrary Nth-order () lensless ghost imaging with thermal light has
been performed for the first time by only recording the intensities in two
optical paths. It is shown that the image visibility can be dramatically
enhanced as the order N increases. It is also found that longer integration
times are required for higher-order correlation measurements as N increases,
due to the increased fluctuations of higher-order intensity correlation
functions.Comment: Updated version; some more detailed explanations provide
TRANSIENT ELECTROMAGNETIC SOUNDING IN 2D, 3D, AND 4D MODES: SEQUENCE OF GEOLOGICAL EXPLORATION ACTIVITIES
From 1980s, electromagnetic prospecting is an integral component of geophysical techniques for oil and gas exploration in many regions of the Russian Federation. Electromagnetic methods are used at all stages of geological exploration, including reconnaissance, discovery, prospecting and appraisal, and economic mining. In oil and gas exploration, the most commonly used technique is the near-field transient electromagnetic sounding (TEM). On the other hand, for each of these stages, specific tasks of electromagnetic prospecting have not been clearly defined yet. Furthermore, there are no standard requirements to the volume of a priori geological and geophysical information, which is sufficient for solving a geological problem. If such information is lacking or insufficient, a geological problem may be incorrectly stated and/or improperly correlated with the current stage of works. Our study aims to define which geological problems should be addressed by electromagnetic survey at the different stages of geological exploration, and to specify the requirements to the availability of a priori geological and geophysical information. We have analyzed the electromagnetic data from the regions of East and West Siberia, which have different geological settings. The main geological problems that can be solved by the seismic and electromagnetic techniques are determined. We propose a set of geophysical survey operations, which is optimal for oil and gas exploration. An effective sequence of electromagnetic prospecting stages is determined, and preliminary and accompanying surveys are specified. The requirements to the availability of a priori information are proposed, and its volume is defined. Geological problems are defined with respect to the corresponding stages of geological exploration. Special attention is given to approaches to the mineral resource estimation and calculation of hydrocarbon reserves, taking into account electromagnetic survey results. It is proposed to use the electromagnetic data at the stage of prospecting and appraisal, which aims to assess the resources of categories Dl and D0, as well as at the exploration stage for estimating the reserves of category C2 in new and explored fields. Approaches to the economic assessment of using electromagnetic surveys as part of the geological exploration are discussed. Our study shows that a correct sequence of electromagnetic prospecting operations at each stage can ensure obtaining an original geological dataset of the given stage and thus providing a proper basis for the next stage of oil-gas field investigation
- …