253 research outputs found

    Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials

    Get PDF
    Complex Ginzburg-Landau (CGL) models of laser media (with the cubic-quintic nonlinearity) do not contain an effective diffusion term, which makes all vortex solitons unstable in these models. Recently, it has been demonstrated that the addition of a two-dimensional periodic potential, which may be induced by a transverse grating in the laser cavity, to the CGL equation stabilizes compound (four-peak) vortices, but the most fundamental "crater-shaped" vortices (CSVs), alias vortex rings, which are, essentially, squeezed into a single cell of the potential, have not been found before in a stable form. In this work we report families of stable compact CSVs with vorticity S=1 in the CGL model with the external potential of two different types: an axisymmetric parabolic trap, and the periodic potential. In both cases, we identify stability region for the CSVs and for the fundamental solitons (S=0). Those CSVs which are unstable in the axisymmetric potential break up into robust dipoles. All the vortices with S=2 are unstable, splitting into tripoles. Stability regions for the dipoles and tripoles are identified too. The periodic potential cannot stabilize CSVs with S>=2 either; instead, families of stable compact square-shaped quadrupoles are found

    Stable surface solitons in truncated complex potentials

    Full text link
    We show that surface solitons in the one-dimensional nonlinear Schr\"odinger equation with truncated complex periodic potential can be stabilized by linear homogeneous losses, which are necessary to balance gain in the near-surface channel arising from the imaginary part of potential. Such solitons become stable attractors when the strength of homogeneous losses acquires values from a limited interval and they exist in focusing and defocusing media. The domains of stability of surface solitons shrink with increase of the amplitude of imaginary part of complex potential.Comment: 3 pages, 4 figures,accepted by Optics Letter

    Stability of spinning ring solitons of the cubic-quintic nonlinear Schrodinger equation

    Full text link
    We investigate stability of (2+1)-dimensional ring solitons of the nonlinear Schrodinger equation with focusing cubic and defocusing quintic nonlinearities. Computing eigenvalues of the linearised equation, we show that rings with spin (topological charge) s=1 and s=2 are linearly stable, provided that they are very broad. The stability regions occupy, respectively, 9% and 8% of the corresponding existence regions. These results finally resolve a controversial stability issue for this class of models.Comment: 10 pages, 5 figures, accepted to Phys. Lett.

    Light bullets in optical tandems

    Full text link
    We address the concept of three-dimensional light bullet formation in structures where nonlinearity and dispersion are contributed by different materials, including metamaterials, which are used at their best to create suitable conditions where bullets can form. The particular geometry considered here consists of alternating rings made of highly dispersive but weakly nonlinear media and strongly nonlinear but weakly dispersive media. We show that light bullets form for a wide range of parameters.Comment: 13 pages, 4 figures, to appear in Optics Letter

    Anomalous splitting of the first penetration peak in the local magnetization of Bi2Sr2CaCu2O8+y single crystals

    Get PDF
    A scanning Hall probe microscope (SHPM) with an effective spatial resolution of ∌1 ÎŒm has been used to study the local induction in high quality superconducting Bi2Sr2CaCu2O 8+ÎŽ single crystals at high temperatures and low magnetic fields. We observed, for the first time to our knowledge, an anomalous splitting of the peak of first full penetration of magnetic field. We discuss the observed splitting, which is connected to the effects of surface and geometrical barriers on the vortex lattice

    Amplification of surface plasmon polaritons in the presence of nonlinearity and spectral signatures of threshold crossover

    Full text link
    We describe effects of nonlinearity on propagation of surface plasmon polaritons (SPPs) at an interface between a metal and an amplifying medium of the externally pumped two-level atoms. Using Maxwell equations we derive the nonlinear dispersion law and demonstrate that, the nonlinear saturation of the linear gain leads to formation of stationary SPP modes with the intensities independent from the propagation distance. Transition to the regime of stationary propagation is similar to the threshold crossover in lasers and leads to narrowing of the SPP spectrum.Comment: http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-34-18-286

    Analysis of an atom laser based on the spatial control of the scattering length

    Full text link
    In this paper we analyze atom lasers based on the spatial modulation of the scattering length of a Bose-Einstein Condensate. We demonstrate, through numerical simulations and approximate analytical methods, the controllable emission of matter-wave bursts and study the dependence of the process on the spatial dependence of the scattering length along the axis of emission. We also study the role of an additional modulation of the scattering length in time.Comment: Submitted to Phys. Rev.

    Helmholtz solitons in optical materials with a dual power-law refractive index

    Get PDF
    A nonlinear Helmholtz equation is proposed for modelling scalar optical beams in uniform planar waveguides whose refractive index exhibits a purely-focusing dual powerlaw dependence on the electric field amplitude. Two families of exact analytical solitons, describing forward- and backward-propagating beams, are derived. These solutions are physically and mathematically distinct from those recently discovered for related nonlinearities. The geometry of the new solitons is examined, conservation laws are reported, and classic paraxial predictions are recovered in a simultaneous multiple limit. Conventional semi-analytical techniques assist in studying the stability of these nonparaxial solitons, whose propagation properties are investigated through extensive simulations

    Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media

    Full text link
    We demonstrate the existence of stable three-dimensional spatiotemporal solitons (STSs) in media with a nonlocal cubic nonlinearity. Fundamental (nonspinning) STSs forming one-parameter families are stable if their propagation constant exceeds a certain critical value, that is inversely proportional to the range of nonlocality of nonlinear response. All spinning three-dimensional STSs are found to be unstable.Comment: 14 pages, 6 figures, accepted to PRE, Rapid Communication
    • 

    corecore