607 research outputs found

    Mechanical Unfolding of a Simple Model Protein Goes Beyond the Reach of One-Dimensional Descriptions

    Get PDF
    We study the mechanical unfolding of a simple model protein. The Langevin dynamics results are analyzed using Markov-model methods which allow to describe completely the configurational space of the system. Using transition path theory we also provide a quantitative description of the unfolding pathways followed by the system. Our study shows a complex dynamical scenario. In particular, we see that the usual one-dimensional picture: free-energy vs end-to-end distance representation, gives a misleading description of the process. Unfolding can occur following different pathways and configurations which seem to play a central role in one-dimensional pictures are not the intermediate states of the unfolding dynamics.Comment: 10 pages, 6 figure

    Quantitative volumetric Raman imaging of three dimensional cell cultures

    Get PDF
    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in 3D cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy

    Lyapunov Design for Event-Triggered Exponential Stabilization

    Full text link
    Control Lyapunov Functions (CLF) method gives a constructive tool for stabilization of nonlinear systems. To find a CLF, many methods have been proposed in the literature, e.g. backstepping for cascaded systems and sum of squares (SOS) programming for polynomial systems. Dealing with continuous-time systems, the CLF-based controller is also continuous-time, whereas practical implementation on a digital platform requires sampled-time control. In this paper, we show that if the continuous-time controller provides exponential stabilization, then an exponentially stabilizing event-triggered control strategy exists with the convergence rate arbitrarily close to the rate of the continuous-time system.Comment: accepted by ACM HSCC 2018 conferenc

    Generalized Fokker-Planck equation, Brownian motion, and ergodicity

    Full text link
    Microscopic theory of Brownian motion of a particle of mass MM in a bath of molecules of mass mMm\ll M is considered beyond lowest order in the mass ratio m/Mm/M. The corresponding Langevin equation contains nonlinear corrections to the dissipative force, and the generalized Fokker-Planck equation involves derivatives of order higher than two. These equations are derived from first principles with coefficients expressed in terms of correlation functions of microscopic force on the particle. The coefficients are evaluated explicitly for a generalized Rayleigh model with a finite time of molecule-particle collisions. In the limit of a low-density bath, we recover the results obtained previously for a model with instantaneous binary collisions. In general case, the equations contain additional corrections, quadratic in bath density, originating from a finite collision time. These corrections survive to order (m/M)2(m/M)^2 and are found to make the stationary distribution non-Maxwellian. Some relevant numerical simulations are also presented

    Chicken egg white — characteristics of its properties and the prospects for functional foods development

    Get PDF
    The overview presents the literature data and the results of our own research on prospects of using the chicken eggs as the basis of functional foods. The composition of chicken eggs and their components, characteristics of egg white proteins properties are presented thereto. The biologically active compounds included into egg composition are analyzed. The data on the biological value of egg white are given. The characteristic of egg white foaming ability is presented. It has been shown that the ability of proteins to form stable intermolecular structures, especially with partially denaturated proteins, allows them forming viscoelastic superficial films that ensure foam stability. The high foaming ability of chicken egg protein macromolecules is directly related to their interphase properties, i. e. the ability to form interphase layers at the “liquid —  gas” interface. The foaming properties of the various egg proteins are not equal, and therefore they contribute to foaming properties at various extents. The model of egg white proteins gelation is considered and the factors influencing the gelation process are described. It has been shown that very important changes in proteins properties are caused by denaturation. The proteins lose their ability to hydrate; the protective aqueous shell around the globules disappears, the proteins stick together, grow larger and lose solubility. This process is called coagulation. The influence of denaturation and aggregation on variations of protein properties is described below. Data on protein fortification with functional ingredients (calcium, iodine, plant polyphenols) and creation of functional egg and meat foods are presented here

    Pigmented purpuric dermatosis: a review of the literature

    Get PDF
    The pigmented purpuric dermatoses (PPDs) are a group of benign, chronic diseases. The variants described to date represent different clinical presentations of the same entity, all having similar histopathologic characteristics. We provide an overview of the most common PPDs and describe their clinical, dermatopathologic, and epiluminescence features. PPDs are both rare and benign, and this, together with an as yet poor understanding of the pathogenic mechanisms involved, means that no standardized treatments exist. We review the treatments described to date. However, because most of the descriptions are based on isolated cases or small series, there is insufficient evidence to support the use of any of these treatments as first-line therapy

    Chaotic transients in the switching of roto-breathers

    Get PDF
    By integrating a set of model equations for Josephson ladder subjected to a uniform transverse bias current we have found almost all of the kinds of breathers described in recent experiments, and closely reproduced their voltage-current characteristics and switching behaviour. Our main result is that a chaotic transient occurs in the switching process. The growth of tiny perturbations during the chaotic transient causes the new breather configuration to be extremely sensitive to the precise history of the initial breather and can also cause the new breather to have a new centre of symmetry.Comment: 6 pages, 4 figure
    corecore