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Quantitative volumetric Raman imaging of three
dimensional cell cultures
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The ability to simultaneously image multiple biomolecules in biologically relevant

three-dimensional (3D) cell culture environments would contribute greatly to the under-

standing of complex cellular mechanisms and cell–material interactions. Here, we present a

computational framework for label-free quantitative volumetric Raman imaging (qVRI). We

apply qVRI to a selection of biological systems: human pluripotent stem cells with their

cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell

culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D

cell culture environment. We demonstrate visualization and quantification of fine details in

cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprece-

dented biomolecular specificity for vibrational microspectroscopy.
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C
ell culture systems that better recapitulate the physiologi-
cal conditions and environment a cell experiences in vivo
can improve our understanding of cellular behaviour. The

development of three-dimensional (3D) cell culture systems has
been effectively applied in several fields including developmental
biology, tissue engineering and drug discovery1. Indeed, a
plethora of new 3D culture systems are continuously being
developed to aid this transition from two-dimensional (2D)
systems in life sciences2,3. These culture systems heavily rely on
optical imaging modalities to provide biological information.
Currently, 3D culture systems are studied using optical
microscopy techniques, with confocal fluorescence microscopy
being the gold standard4. However, conventional confocal
microscopy is semi-quantitative and requires labelling that may
severely influence cell function and intracellular processes5.
Hence, there is a great and unmet need to introduce
endogenous techniques that can study cells in highly relevant
3D environments while providing quantitative biomolecular
information of multiple components simultaneously and non-
destructively.

Several optical imaging techniques based on endogenous
biomolecules have previously been used to provide detailed
visualization of the morphology and spatial distribution of
biological structures4,6–12. One of these, Raman spectroscopy,
which is an inelastic light scattering technique, can provide label-
free biochemical information. Raman spectroscopy-based
imaging studies on cellular systems have been mostly applied
using non-confocal settings associated with challenges arising
from substrate background signals and poor z-axis resolution
giving rise to overlapping spectral signatures. This naturally
compromises the biomolecular specificity achievable using
multivariate analysis. The development of confocal Raman
spectroscopy has enabled greater depth resolution13; however,
the vast majority of cellular confocal Raman spectroscopy studies
have still been limited to imaging of a single layer, which might
compromise biomolecular quantification. Of the few early reports
of 3D confocal Raman imaging14,15, these are not yet coupled to
biomolecular quantification.

Here we introduce a comprehensive computational framework,
namely quantitative volumetric Raman imaging (qVRI) to
visualize, identify and quantify biomolecules in 2D and 3D cell
culture systems. We use qVRI to image: human pluripotent stem
cells and monocytes/macrophages in conventional culture systems,
as well as mesenchymal stem cells in 3D biomaterials. Our results
reveal an intimate relationship between spatial resolution and
biomolecular specificity achievable using spectral unmixing
techniques. By taking advantage of this, we demonstrate the
visualization of fine details in 3D cell shape, cytoplasm, nucleus,
protein rich clusters, intracellular lipid bodies, membrane lipids
and submicron-sized cytoskeletal structures with unprecedented
biomolecular specificity for vibrational microspectroscopy. Further,
we demonstrate for the first time a volumetric quantification of
endogenous biomolecules using 3D Raman imaging datasets that
allows us to spatially monitor complex biological processes like
differentiation within a 3D cell culture system.

Results
qVRI computational framework. Our developed computational
framework is tailored to handle volumetric hyperspectral datasets
measured from a z-stack of Raman images (Fig. 1). First, all
hyperspectral datasets collected from each z layer are assembled
and unfolded into a single data matrix. Each Raman spectrum of
a hyperspectral dataset is then pre-processed individually (see
Methods). Next, the unfolded volumetric hyperspectral dataset
can be either directly reconstructed based on univariate peak

intensities or fed to a spectral unmixing algorithm. Here we
applied vertex component analysis (VCA) due to its computa-
tional efficiency over other algorithms16. Briefly, VCA assumes
that the cell volume contains a number of voxels with nearly pure
components known as ‘endmembers’. Endmembers are real
spectra obtained directly from the pre-processed volumetric
hyperspectral dataset and are assumed to represent the voxels
in the dataset containing the purest amounts of specific
biomolecules. For high resolution confocal Raman imaging,
these endmembers essentially represent the biomolecular
architecture of the entire cell and its organelles. Consequently,
biomolecular relative abundance values can be associated with
each voxel17. Finally, each biomolecular component can be
refolded for 3D volumetric visualization and quantification.

3D visualization of pluripotent stem cells and cardiomyocytes.
To demonstrate the developed approach we imaged human
induced pluripotent stem cells (hiPSCs), hiPSC-derived cardio-
myocytes (CMs) and adult rat ventricular CMs since they present
a well-known and defined 3D morphology and distinct bio-
chemical composition18–22. Needing to accurately determine the
degree of maturation in hiPSC-CMs after in vitro differentiation
is one of the main constraints for their bioapplication23. As a
consequence, a comprehensive characterization of each
maturation step is highly valuable for both the progress and
translation of this technology24. In the work reported here, all
volumetric Raman imaging was performed using a 50mm
pinhole. We first performed univariate imaging of distinct
vibrational modes. The intensities of specific Raman peaks were
volumetrically reconstructed highlighting the cell’s main
biochemical components and visualizing their 3D morphology
(Fig. 2). We used the highly specific molecular marker of
phenylalanine (1,008 cm� 1) to visualize protein content25. DNA
was visualized using the O–P–O band (789 cm� 1) while the CH2

symmetric stretching highlighted areas rich in lipid structures
(2,857 cm� 1). The 3D reconstruction of hiPSCs emulates the
dense morphology of human pluripotent stem cell colonies26.
hiPSC-derived CMs were B3 mm in height, which matches
previous reports of their particularly flat nature27. Adult
ventricular CM reconstruction very clearly showed a
binucleated mature cell with the expected elongated rod-like
form and sarcomeric protein strips24. hiPSC-derived CMs also
exhibited early stages of protein alignment, but not as distinct as
adult CMs. Glycogen, an energy-storing polysaccharide, showed a
differential presence, with distinct peaks associated with glycogen
in the hiPSC colonies and hiPSC-derived CMs, that are not seen
in adult CMs23. Therefore, the presence of glycogen can be related
to the degree of maturation of hiPSC-CM, highlighting the ability
of our novel approach to provide relevant data on the quality of
hiPSC-derived CMs. To our knowledge, this is the first label-free
technique able to provide 3D information in this regard23.

Volumetric quantification of monocytes and macrophages. We
then aimed to demonstrate the volumetric quantification ability
of qVRI. We followed the differentiation of monocytes (THP-1
cells) into macrophages (Mj) and characterized their complex
lipid composition. A heterogeneous population of lipids is known
to have numerous roles in phagosome formation and maturation
in Mj (ref. 28). Therefore, understanding the role of each lipid
subtype involved in their endocytic pathway provides crucial
information for the immune responsiveness of these cells. To
improve the molecular specificity compared to univariate
imaging, the volumetric hyperspectral data collected were
analysed using VCA. From the analysis we identified three
different types of lipids: triglycerides (TAGs), phospholipids
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(PLPs) and cholesterol esters (Fig. 3)29. We reconstructed each of
the biochemical components identified (Fig. 3a). TAGs were
present in dense lipid bodies in the cytoplasm. We identified PLPs
located at the cell membrane as well as very small cholesterol rich
regions possibly localized inside endosomes. The extracted
cytoplasm spectra from the VCA show the typical
phenylalanine and amide bands expected from cellular
structures. The three lipid types all show strong CH2 twists
(1,300 or 1,303 cm� 1) and blue shifted CH2 deformation
(1,443 cm� 1) compared to protein rich regions, like the
cytoplasm and nucleus. TAG spectra show the characteristic
C¼O stretching (1,747 cm� 1) (not present in fatty acids) and
some low intensity vibrations around 850–890 cm� 1 (not present
in cholesterol ester and membrane lipids), which could be related

to C–O–O or CH3 rocking vibrations. Moreover, PLP spectra
show a chain C–C stretch relating them to membrane lipids29.
Cholesterol spectra were of very high intensity showing the
specific bands expected from cholesteryl stearate with the
additional shoulder at 1,443 cm� 1 and the 1,066 cm� 1 and
1,134 cm� 1 bands (Fig. 3b). These results show that by using
quantitative volumetric Raman spectroscopy different lipid
subtypes can be identified. To compare biochemical
composition of the undifferentiated THP-1 cells to the
differentiated Mj we applied the volumetric quantification
protocol (Fig. 1) by using the abundance values of the
respective VCA components (see Methods). We measured
similar amounts of cytoplasmic proteins and DNA (Fig. 3c), yet
Mj showed significantly higher amounts of PLPs (two sample t-
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Figure 1 | Schematic illustration of qVRI imaging process, from data collection and spectral unmixing to 3D reconstruction and quantification. The

confocal microscope provides control over x� y� z dimensions of the sample position for 3D imaging. Each imaging plane is described by a hyperspectral

dataset. Hyperspectral datasets are 3D datasets with x� y (number of pixels in a single imaging plane) spatial dimensions and w (wavenumbers) spectral

dimension. Each voxel in 3D is associated with a single Raman spectrum. Combining hyperspectral datasets from multiple imaging planes creates a

volumetric hyperspectral dataset with z� x spatial dimensions and z being equal to the sum of yn imaging planes. For spectral unmixing analysis the

volumetric hyperspectral dataset is unfolded to form a matrix D¼M�w with M¼ z� x. D is unmixed using N number of ‘pure’ components (e.g., here

N¼4) into two matrices C and ST. C contains the relative abundance values of the pure components in each voxel in an M�N matrix with every column

associated to one component. ST is an N�w matrix containing a ‘pure’ component spectrum in every row. Each column of C contains all the spatial

information needed to reconstruct every components’ 3D architecture by refolding it to the original x� y� z dimensions. Each voxel contains the

concentration profile of the reconstructed component. The number of voxels within an isosurface at a chosen threshold can be used as a metric for

quantification, comparing experimental conditions (e.g., comparing Cell A to Cell B).
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test, Po0.001). Interestingly there was an increase in TAGs
compared to the THP-1 cells (two sample t-test, Po0.001).
Cholesterol signals were only present in Mj (two sample t-test,
Po0.001) (Fig. 3c). Hence, localization and characterization of
lipid composition within the cytoplasm and quantification of
TAG and other lipid accumulations can provide valuable insight
into Mj-to-foam cell transition, which could help in the study of
diseases like atherosclerosis30.

The computational framework developed maximizes the
imaging capability of confocal Raman spectroscopy and enables
visualization of small biomolecular accumulations. Resolving the
z dimension improves molecular specificity achievable using
spectral unmixing. To exemplify this, we simulated the Raman
signal z-overlapping that follows standard non-confocal
analysis by summing over the whole z dimension. We then

applied the same VCA analysis and volumetric reconstruction
(Supplementary Fig. 1). These results show that subcellular
structures significantly overlap hindering the spectral unmixing
capacity to resolve individual biomolecules such as different lipid
subtypes. For instance spectral unmixing could not resolve PLPs
or cholesterol from the TAG signals, and no significant
differences between lipids were found following volumetric
quantification (two sample t-test, P40.05). Overall, this shows
that the superior molecular specificity provided by high-
resolution qVRI enables biomolecular subtyping not achievable
using standard Raman techniques.

Volumetric quantification in a 3D cell culture system. Given
recent efforts in developing advanced 3D hydrogel culture
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systems31, we aimed to apply qVRI for the characterization of
cellular biochemistry and morphology within a hydrogel
biomaterial. We imaged hMSCs in two different 3D hydrogel
culture systems, where one is bioinert in that the network is only
comprised of polyethylene glycol (PEG), and the other is
bioactive by incorporating biomimetic peptides for both cellular
adhesion (arginylglycylaspartic acid (RGD) peptide) and

degradation (matrix metalloproteinase (MMP) degradable
peptide) within the hydrogels’ crosslinked network (Fig. 4a). As
shown here before, qVRI provides a spectral signature for the
subcellular components identified (Fig. 4b). Using the intensity of
the 847 cm� 1 band (C–O–C or C–C stretching) that corresponds
to the PEG network, the hydrogel can be visualized and precisely
distinguished from the cells. In this culture system, the
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Figure 3 | Lipid analysis in monocyte to macrophage differentiation. (a) qVRI identifies the main subcellular components of THP-1 cells (n¼4 cells) and

THP-1 differentiated macrophages (Mj) (n¼4 cells) representative cells shown, and their corresponding (b) endmember Raman spectra from VCA

(showing five components); from top to bottom cytoplasm (blue), nucleus (red), triacylglycerols (green), phospholipids (orange), cholesterol (magenta).

(c) Bar chart of mean abundance values for each subcellular component showing significant differences between the two cells for TAG (two sample t-test,

Po0.001), PLP (two sample t-test, Po0.001) and cholesterol (two sample t-test, Po0.001), ***Po0.001 (n/d, non-detectable). Error bars represent one

standard deviation around the mean. Scale bar, 10mm.
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reconstruction of PLPs enabled an unprecedented visualization of
the entire cell membrane. To our knowledge, this is the first time
a distinct lipid signal can be resolved from a thin cell membrane
that can be attributed to the high molecular specificity provided

by the spectral unmixing framework. Cells within the bioinert
PEG hydrogel appeared to be ‘entrapped’ in the hydrogel,
retaining a spherical shape, indicating little or no interaction with
the material as predicted for this hydrogel. On the contrary, in the
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(b) endmember Raman spectra from VCA (showing five components); from top to bottom cytoplasm (blue), nucleus (red), triacylglycerols (green),

phospholipids (orange) and hydrogel (cyan). (c) Bar chart of mean abundance values for each subcellular component. Error bars represent one standard

deviation around the mean. Scale bar, 10mm.
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bioactive peptide-functionalized hydrogel, qVRI reconstruction
reveals a more elongated cellular morphology in 3D, with
filopodia extending in all directions that indicate cellular
adhesion and interaction with the hydrogel network structure
(see Supplementary Movie). Our biochemical volumetric
quantification found no significant differences in the
abundances of biochemical components comprising the cells in
the two different hydrogels (two sample t-test, P40.05),
which is not surprising considering this analysis was performed
after only 7 days in culture and in the absence of any
differentiation factors (Fig. 4c). However, our validation within
short-term culture provides proof-of-concept for the qVRI
technique, which could ultimately provide highly valuable
insight into biomolecular changes during the long-term culture
of stem cells undergoing differentiation within different 3D
culture systems, in order to elucidate with greater detail how
cell–material interactions affect biological processes. Additionally,
further importance lays in the label-free, non-destructive
molecular specificity of qVRI, since standard methods4 used to
characterize cells in biomaterials require labelling and often
destructive sectioning in order to apply staining molecules and
conduct accurate imaging. Thus, qVRI allows us to image cells
non-invasively and quantify important biomolecules in a
more relevant 3D culture environment. To the best of our
knowledge, this is the first report of a label-free 3D
reconstruction, characterization and quantification of a cell
within a biomaterial.

In conclusion, our developed quantitative Raman imaging
approach represents a novel label-free method for visualization of
3D cell morphology and volumetric quantification of biomole-
cular structures with submicron-size detail. We show that spatial
resolution and molecular specificity are intimately interlinked and
through spectral unmixing, we can characterize relevant biomo-
lecules and resolve them into subtypes. We envision the
developed approach being a highly valuable complementary
information source for a variety of cell biology and tissue
engineering applications. Finally, qVRI will open up new
avenues for studying the complexities of cell–material interac-
tions within a plethora of 3D culture systems, revealing new
information about cell behaviour and function in advanced
biomaterials that has been until now difficult or impossible to
measure.

Methods
3D confocal Raman imaging. 3D Raman imaging was performed on a confocal
Raman micro-spectroscope (alpha300Rþ , WITec, Ulm, Germany). The light
source used was a 532 nm laser with the application of a � 63/1.0 NA water
immersion microscope objective lens (W Plan-Apochromat, Zeiss, Oberkochen,
Germany). The scattered light was directed to the spectrometer via a 50 mm fibre
also acting as a pinhole providing confocality. A 600 lines per mm grating spec-
trograph (UHTS 300, WITec, Ulm, Germany) was used and spectra were acquired
using a thermoelectrically cooled back-illuminated CCD camera (Newton
DU970N-BV-353, Andor, Belfast, UK) with spectral resolution of B10 cm� 1

(defined at full width at half maximum of mercury argon emission lines) and
40 mW laser power at the sample. Cells were imaged by collecting Raman images
from 10 layers of 1 mm increment in the z direction spanning the cell volume
(Supplementary Fig. 2). A 650 nm step size was used in the x and y direction
for each Raman image with 0.3 s integration time and a spectral range from 0 to
3,000 cm� 1.

Multivariate data analysis. Each volumetric hyperspectral dataset was analysed
using in-house written methods through Matlab software (2016, MathWorks).
Each Raman image was first pre-processed separately and has undergone baseline
correction, cosmic rays removal and smoothing using the PLS toolbox by Eigen-
vector Research, Inc. as shown in Supplementary Fig. 3. For the cosmic ray
removal, we used a principal component analysis algorithm and outlier spectra
identified by Q residuals and Hotelling’s T2 plots were removed manually after
being confirmed that they contained cosmic rays. For the spectral smoothing, we
used a second order Savitzky–Golay algorithm with a 3-point window32. For the
baseline correction, we used the weighted least squares processing method with a

third order polynomial32 in the spectral range (700–1,800 cm� 1). Following this,
all hyperspectral images were assembled into one volumetric hyperspectral dataset
and unfolded into a single matrix. The volumetric hyperspectral dataset was
normalized to remove any instrument effects and make the samples comparable.
VCA16 was used to ‘unmix’ the Raman spectra and identify subcellular
components within the volumetric hyperspectral datasets using the entire dataset
including all cells imaged. For each application, the VCA analysis was performed
using a number of components that maximized the number of spectra that could
be related to a specific biological component through peak assignment and
correlation to previously published work29. From the VCA analysis the ‘pure’
spectra of each subcellular component were obtained. Following this, a non-
negative least squares algorithm was used for each of the VCA obtained spectra to
provide abundance values from 0 to 1 associated to each voxel in the volumetric
hyperspectral dataset. By refolding each component’s abundance values matrix
back to its original shape, a volume describing the components’ 3D architecture
was plotted using Icy software (Version 1.7.3.0, BioImage Analysis unit Institut
Pasteur). We then selected a threshold value, which removed the background
signal. We found that values close to the average abundance value worked well for
our specific application. Threshold values were fixed for each experiment and an
isosurface was plotted for each component. The number of voxels within each
isosurface were counted and the percentage to the total number of voxels for
that component was calculated. These values were used for the volumetric
quantification and comparison between different cell types17. Data were checked
with two sample variance tests to be normally distributed. Comparisons between
groups were therefore performed using an unpaired two-sided Student’s t-test,
and the result considered statistically significant *Po0.05, **Po0.01 and
***Po0.001.

Cardiac differentiation of human pluripotent stem cells. All products are from
Life Technologies (UK) unless otherwise stated. Human-induced pluripotent stem
cell-derived CMs were obtained as follows. Gibco Episomal hiPSC Line was
induced to differentiate by biphasic modulation of Wnt signalling33. Briefly, cells
were routinely grown on Matrigel coated plates in Essential 8 medium. To start
differentiation, cells were detached with 0.5 mM EDTA and plated at 150,000 cells
cm� 2 in Essential 8 medium supplemented with Thiazovivin (Stratech Scientific,
UK). Upon confluence (approximately 24 h later), cells were exposed for 24 h to
10 mM Wnt-activatorCHIR99021 in RMPI plus 1� B27 minus insulin.
Subsequently, cultures were maintained for 48 h in RPMI plus 1� B27 minus
insulin, then for 48 h in 5 mM Wnt-inhibitor IWP4 (Tebu-bio, UK) in RPMI
plus 1� B27 minus insulin. Finally, cells were kept for 48 h in RPMI plus
1� B27 minus insulin before being transitioned to RPMI plus 1� B27 (complete).
Beating clusters started to emerge around 9 days after the start of the
differentiation. Thereafter, a metabolic selection method by depletion of
glucose and supplementation with 4 mM Lactate (Sigma-Aldrich, UK)34 was
applied for 3 days. Cells were then returned to normal RPMI plus 1� B27 for 2
days before a second round of purification. Finally, cells were detached using
TrypLE Express and plated on glass bottom chamber slides for subsequent analysis.
Slides were then fixed with 4% v/v PFA and washed gently with PBS before
imaging.

Isolation of rat adult ventricular cardiomyocytes. All work was carried out
under the Animals (Scientific Procedures) Act 1986 and the EU Directive 2010/63/
EU. Sprague-Dawley rats were killed by cervical dislocation after anaesthesia with
3% isoflurane. Following aortic cannulation to the Langendorff setup, the hearts
were perfused with normal Tyrode’s solution for 5 min (in mM: 120 NaCl, 5.4 KCl,
5 MgSO4, 5 sodium pyruvate, 20 glucose, 20 taurine, 10 HEPES (free acid), 5
nitrilotriacetic acid, and 0.04 CaCl2, all from Sigma-Aldrich; pH 6.96), and finally
for 9 min with a solution containing collagenase (1 mg ml� 1; Worthington, UK)
and hyaluronidase (0.6 mg ml� 1; Sigma-Aldrich) dissolved in buffer solution (in
mM: 120 NaCl, 5.4 KCl, 5 MgSO4, 5 sodium pyruvate, 20 glucose, 20 taurine, 10
HEPES (free acid), and 0.2 CaCl2; pH 7.4). The left ventricle was then removed, cut
into small pieces, resuspended in collagenase/hyaluronidase solution, and shaken in
a water bath at 37 �C for 5 min twice. Then the cells were filtered through a 200-mm
nylon mesh and centrifuged at 500 rpm for 1 min. The cells used for experiments
were re-suspended and stored in the buffer solution at room temperature.
Myocytes were kept in normal Tyrode’s solution until used when they were
transferred to culture medium. Myocytes were plated in culture in maintenance
medium (M199 (Earls’ salt), 2% w/v BSA, 5 mM creatine, 5 mM taurine, 0.1 mM
ascorbic acid, 2 mM carnitine, 100 U ml� 1 penicillin, and 100 mmol l� 1

streptomycin). The medium was changed after 2 h to remove unattached cells.
Myocytes were fixed and analysed within 24 h of isolation.

Monocyte differentiation and cell attachment to slides. THP-1 cells
(CD34±) were cultured in RPMI 1640 medium with 2 mM L-glutamine,
10% FBS. THP1-derived macrophages (CD14±) were obtained by supplying
100 ng ml� 1 of phorbol-12-myristate-13-acetate (PMA) to the THP-1 cell media.
After 48 h cells differentiated from suspended monocytes to machrophages
attached to the substrate. Glass or MgF2 slides were used as substrates. For the
THP-1 cells, slides were pre-treated with BD Cell-Tak Cell and Tissue Adhesive in

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14843 ARTICLE

NATURE COMMUNICATIONS | 8:14843 | DOI: 10.1038/ncomms14843 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


a 24-well tissue culture plate (BD Biosciences, 5.2 ml in 300 ml of sodium bicarbo-
nate buffer, pH¼ 8 for 40 min at room temperature). Following two washing steps
with ddH2O, MgF2 slides were incubated with the cell suspension in PBS for
30 min. Slides were then fixed with 4% v/v PFA and washed gently with PBS before
imaging.

hMSC 3D culture and hydrogel synthesis. A 10% w/w macromer solution of
eight-arm PEG-norbornene35,36 was mixed with appropriate crosslinker and
adhesive peptide where indicated in aMEM supplemented with 1% v/v antibiotic/
Antimycotic (A/A; Invitrogen, UK). For the bioinert hydrogel, PEG-dithiol
(MW 1,000, Sigma) was used as the crosslinker at a thiol:norbornene molar
ratio of 0.8:1. For the degradable hydrogel, the MMP-degradable peptide
CDDGPQGIWGQC was used as the crosslinker at a thiol:norbornene molar ratio
of 0.8:1, and the cell-adhesive peptide CGRGDS was added at 2.5 mM in the
macromer solution. Peptides were synthesized by standard Fmoc solid-phase
peptide synthesis, followed by HPLC purification (water/acetonitrile gradient with
0.1% v/v TFA) and pure peptide molecular weight verification using LCMS. The
hMSCs were cultured under standard cell culture conditions (37 �C, humidified
atmosphere with 5% CO2). Bone marrow-derived hMSC were purchased from
Lonza (UK) and expanded to passage 4. The Lonza donor used for all experiments
was a 29-year-old Caucasian female (#372262). The hMSCs were cultured in T175
flasks at a cell density of approximately 2,857 cells cm� 2 in Alpha Minimal
Essential Medium Glutamax-1 (aMEM; Life Technologies, UK), supplemented
with 10% v/v mesenchymal stem cell grade fetal bovine serum (MSC-FBS; Life
Technologies, UK) and 1% v/v A/A, changing the media every 2–3 days. Cells were
encapsulated in hydrogels after reaching passage 5, following trypsinization of
passage 4 cells at confluence. The hMSCs were mixed with macromer solution at 1
million cells ml� 1 and photopolymerized with 0.05% w/w Irgacure 2959 (Sigma)
into thin discs (6 mm diameter� 0.5 mm height) for 7 min with 365 nm light
(5 mW cm� 2). Hydrogels were cultured in aMEM supplemented with 10% v/v
MSC FBS and 1% v/v A/A for 7 days. The hydrogels were then washed three times
in Dulbecco’s Phosphate Buffered saline (DPBS; Invitrogen, UK) before fixing in
4% v/v paraformaldehyde (PFA) in DPBS. The hydrogels were kept in DPBS at
4 �C until imaging.

All cell lines mentioned have tested negative for mycoplasma contamination.
Checks were performed monthly using MycoAlert detection kit (Lonza, UK).

Data availability. The raw research data supporting this paper are available at
https://doi.org/10.5281/zenodo.256329.
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