12 research outputs found

    The SREBF-1 locus is associated with type 2 diabetes and plasma adiponectin levels in a middle-aged Austrian population

    Get PDF
    Funding Information: This study was supported by grants from the Oesterrei-chische Nationalbank (Project No. 10678 and 10932), the Medizinische Forschungsgesellschaft Salzburg and a grant from the Land Salzburg. Copyright: Copyright 2011 Elsevier B.V., All rights reserved.Context: The sterol regulatory element-binding protein-1c (SREBP-1c) is a transcription factor involved in the regulation of lipid and glucose metabolism and has been implicated in the pathophysiology of type 2 diabetes mellitus (T2DM). Objective: We aimed to confirm associations of the SREBF-1 gene with T2DM in an Austrian population and to study possible associations with diabetes-related quantitative traits. Design, settings and participants: We genotyped a diabetic cohort (n=446) along with a control group (n=1524) for a common C/G variation that is located in exon 18c (rs2297508) and has been associated with obesity and T2DM in French populations. Main outcome measures: Body mass index (BMI), indices of insulin sensitivity and β-cell function, plasma adiponectin, T2DM and single-nucleotide polymorphism rs2297508. Results: Genotype distributions associated with rs2297508 differed by T2DM status (P=0.0045), but not by BMI. The variant G allele was associated with a modest, but significant, increase in the prevalence of T2DM after adjustment for age, sex and BMI (G/G: odds ratios (OR) (95% confidence intervals)=1.45 (0.99-2.11) and G/C: OR=1.37 (1.04-1.81)). In a cross-sectional population of non-diabetic subjects, associations of rs2297508 genotypes with plasma adiponectin levels adjusted for age, sex and BMI (P=0.0017) were observed in that the risk G/G genotype displayed the lowest adiponectin levels. Conclusions: We observed associations of rs2297508 with T2DM prevalence and plasma adiponectin. SREBP-1c has been implicated in the regulation of adiponectin gene expression. Our results therefore raise the possibility that sequence variations at the SREBF-1 gene locus might contribute to T2DM risk, at least in part, by altering circulating adiponectin levels.publishersversionPeer reviewe

    Genetic architecture of the APM1 gene and its influence on adiponectin plasma levels and parameters of the metabolic syndrome in 1,727 healthy Caucasians

    Get PDF
    Copyright: Copyright 2008 Elsevier B.V., All rights reserved.The associations of the adiponectin (APM1) gene with parameters of the metabolic syndrome are inconsistent. We performed a systematic investigation based on fine-mapped single nucleotide polymorphisms (SNPs) highlighting the genetic architecture and their role in modulating adiponectin plasma concentrations in a particularly healthy population of 1,727 Caucasians avoiding secondary effects from disease processes. Genotyping 53 SNPs (average spacing of 0.7 kb) in the APM1 gene region in 81 Caucasians revealed a two-block linkage disequilibrium (LD) structure and enabled comprehensive tag SNP selection. We found particularly strong associations with adiponectin concentrations for 11 of the 15 tag SNPs in the 1,727 subjects (five P values <0.0001). Haplotype analysis provided a thorough differentiation of adiponectin concentrations with 9 of 17 haplotypes showing significant associations (three P values <0.0001). No significant association was found for any SNP with the parameters of the metabolic syndrome. We observed a two-block LD structure of APM1 pointing toward at least two independent association signals, one including the promoter SNPs and a second spanning the relevant exons. Our data on a large number of healthy subjects suggest a clear modulation of adiponectin concentrations by variants of APM1, which are not merely a concomitant effect in the course of type 2 diabetes or coronary artery disease.publishersversionPeer reviewe

    Relation of a common variant of the adiponectin gene to serum adiponectin concentration and metabolic traits in an aged Japanese population

    No full text
    Adiponectin is an adipocyte-derived protein that is down-regulated in obesity-linked disorders. Variants of the adiponectin gene (ADIPOQ) have been shown to affect adiponectin level. We have now examined the relation of polymorphisms of ADIPOQ to adiponectin concentration and to metabolic disorders in the Kita-Nagoya Genomic Epidemiology study, a population-based study of elderly Japanese. The genomic region including ADIPOQ was genotyped for 30 single nucleotide polymorphisms in 500 subjects of a screening population with the use of a fluorescence- or colorimetry-based allele-specific DNA primer–probe assay system. Four polymorphisms were then selected for genotyping in an additional 2797 subjects. Serum adiponectin level was negatively associated with metabolic abnormalities after adjustment for age and sex. The minor alleles of the rs1656930, Ile164Thr, and rs9882205 polymorphisms were associated with a low serum adiponectin level. Whereas the minor alleles of rs1656930 and rs9882205 were common (minor allele frequency of 6.2 and 38.5%, respectively), that of Ile164Thr was rare (0.9%). The minor allele of rs1656930 was positively associated with systolic blood pressure and the prevalence of hypertension. The association of rs1656930 with adiponectin level was replicated in an independent population. A subject with the 164Thr/Thr genotype had an extremely low serum adiponectin level (0.6 μg/ml) and the phenotype of metabolic syndrome. Our results suggest that a common variant of ADIPOQ, the minor allele of rs1656930, is associated with hypoadiponectinemia and hypertension. Screening for a common genetic background underlying low adiponectin levels might provide important information for assessment and management of metabolic disorders
    corecore