11 research outputs found

    Durability Evaluation in Concrete Using Cracked Permeability and Chloride Permeability Tests

    Get PDF
    The objective of this study is to identify the possibilities of utilizing the quarry dust in concrete to obtain an improved strength and durability properties of concrete. In the present study, the addition of quarry dust as alternative for natural sand has been investigated, and the durability properties of concrete were evaluated systematically by means of cracked water permeability and rapid chloride permeability tests. The permeability of concrete was assessed with initial stress applied to the concrete specimen and later checked for water permeability. Concrete mixes were casted using ordinary river sand and compared with 100% quarry dust substituted concrete. The addition of quarry dust significantly improved the concrete matrix properties in terms of strength and permeability resistance. The addition of fine quarry dust in concrete resulted in improved matrix densification compared to conventional concrete. Matrix densification has been studied qualitatively through petrographical examination using digital optical microscopy

    Strength Properties of Processed Fly Ash Concrete

    Get PDF
    The present paper reports on the mechanical treatment of fly ash for improving the delayed reactivity of fly ash with the hydration product of cement. Grinding of fly ash was carried out in a ball mill for different time durations and processing time was optimized for maximum fineness. Concrete mixes were prepared using various proportions of processed and unprocessed fly ash replacement in cement (25% and 50%). The influence of steel fiber addition on the mechanical properties of the concrete was studied for different curing periods. The test results on pozzolanic activity and lime reactivity indicate that the processed fly ash exhibited a higher strength gain than the unprocessed fly ash, with a maximum increase in compressive strength of up to 12%. Improved pozzolanic properties were noticed due to the increase in fineness of the fly ash particles

    Performance Evaluation of Steel Fibres in Rice Husk Ash Substituted Concretes

    Full text link
    The potential use of supplementary cementitious materials in plain cement concrete for improving concrete properties has been a growing concern in recent years. In addition, the effective strengthening of the matrix by fibre reinforcements to avoid brittle failure is another requirement for plain concrete. This provided the motivation for exploring the benefits of rice husk ash (RHA) as a cement replacement material and the addition of steel fibres for reducing brittleness in concrete. The rice husk ash used in this study was the residue of burnt raw rice husk sintered in a muffle furnace at 800 °C. The fine particle size of the rice husk ash provided an early pozzolanic reaction upon cement hydration and thus resulted in high cementing efficiency. This paper reports a systematic evaluation of the mechanical properties of rice husk ash substituted concrete mixtures containing RHA as a partial cement substitute at replacement levels of 10% and 20% by weight of cement, with different dosages of steel fibres. Our experimental results demonstrated that 10% RHA substitution led to improved compressive properties compared to plain concrete. The highest increase of split tensile and flexural strength was reported in the case of RHA substituted concrete with steel fibre added
    corecore