34 research outputs found

    Prevalence of infections among 6-16 years old children attending a semi-rural school in Western Maharashtra, India

    Get PDF
    Background: Infections are an important cause of morbidity in rural India. Reports on the prevalence of infections in older childrenand their effects on growth are scarce. Objective: The objectives were to determine the prevalence of common infections among6-16 year old school-children in a semi-rural setting in Western India and to assess the influence of infections on the growth status ofthe children. Materials and Methods: This cross-sectional study was conducted in a semi-rural setting in a Zilla Parishad PrimarySchool, Karegaon, Maharashtra. 802 children (boys = 439), 6-16 years of age were assessed. Data on height, weight and infectionrelatedsymptoms reported by children (pre-tested, validated questionnaire) were collected. K-means cluster analysis was used to createthree clusters based on the severity of infections, and one-way analysis of variance with post-hoc Tukey’s multiple comparisons wasused to test the significance of differences in means of various characteristics of the subjects in three clusters. Results: 43% boys and49% girls reported symptoms of respiratory tract infections occasionally, and 28% boys and 27% girls complained of gastrointestinal(GI) infections occasionally. Children with more severe infections were more likely to be shorter and lighter; this was more marked ingirls. Conclusions: Rural school-going children (aged 6-16 years) suffer from high rates of infections, mainly upper respiratory tractinfections followed by GI tract infections

    High voltage (450 V) GaN Schottky rectifiers

    Get PDF
    We fabricated high standoff voltage (450 V) Schottky rectifiers on hydride vapor phase epitaxy grown GaN on sapphire substrate. Several Schottky device geometries were investigated, including lateral geometry with rectangular and circular contacts, mesa devices, and Schottky metal field plate overlapping a SiO2 layer. The best devices were characterized by an ON-state voltage of 4.2 V at a current density of 100 A/cm2 and a saturation current density of 10^–5 A/cm2 at a reverse bias of 100 V. From the measured breakdown voltage we estimated the critical field for electric breakdown in GaN to be (2.2 ± 0.7) × 10^6 V/cm. This value for the critical field is a lower limit since most of the devices exhibited abrupt and premature breakdown associated with corner and edge effects

    ClpP protease activation results from the reorganization of the electrostatic interaction networks at the entrance pores

    Get PDF
    Bacterial ClpP is a highly conserved, cylindrical, self-compartmentalizing serine protease required for maintaining cellular proteostasis. Small molecule acyldepsipeptides (ADEPs) and activators of self-compartmentalized proteases 1 (ACP1s) cause dysregulation and activation of ClpP, leading to bacterial cell death, highlighting their potential use as novel antibiotics. Structural changes in Neisseria meningitidis and Escherichia co ClpP upon binding to novel ACP1 and ADEP analogs were probed by X-ray crystallography, methyl-TROSY NMR, and small angle X-ray scattering. ACP1 and ADEP induce distinct conformational changes in the ClpP structure. However, reorganization of electrostatic interaction networks at the ClpP entrance pores is necessary and sufficient for activation. Further activation is achieved by formation of ordered N-terminal axial loops and reduction in the structural heterogeneity of the ClpP cylinder. Activating mutations recapitulate the structural effects of small molecule activator binding. Our data, together with previous findings, provide a structural basis for a unified mechanism of compound-based ClpP activation2CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP306943/2015-8; 420567/2016-099999.004913/2015-092015/15822-1; 2012/01953-9; 2016/05019-0; 2012/50161-8Precision Medicine Initiative (PRiME) at the University of Toronto internal fellowship [PMRF2019-007]; Canadian Institutes of Health Research (CIHR) postdoctoral fellowshipCanadian Institutes of Health Research (CIHR); CNPq-Brazil fellowship [202192/2015-6]; Saskatchewan Health Research Foundation postdoctoral fellowship; Ontario Graduate Scholarship (OGS)Ontario Graduate Scholarship; Department of Biochemistry at the University of Toronto; Centre for Pharmaceutical Oncology (University of Toronto); CIHR Training Program in Protein Folding and Interaction Dynamics: Principles and Diseases fellowshipCanadian Institutes of Health Research (CIHR) [TGF-53910]; University of Toronto Fellowship from the Department of Biochemistry; OGS fellowship; NSERC PGS-D2 fellowship; CIHR Emerging Team Grants from the Institute of Infection and ImmunityCanadian Institutes of Health Research (CIHR) [XNE-86945]; CIHR Project grantCanadian Institutes of Health Research (CIHR) [PJT-148564]; Global Affairs Canada (Canada); CAPES (Brazil)CAPES [99999.004913/2015-09]; NSERCNatural Sciences and Engineering Research Council of Canada [RGPIN-2015-04877, DG-20234]; Canada Research Chairs ProgramCanada Research Chairs; CIHR new investigator programCanadian Institutes of Health Research (CIHR); FAPESPFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2015/15822-1, 2012/01953-9, 2016/05019-0, 2012/50161-8]; CNPqNational Council for Scientific and Technological Development (CNPq) [306943/2015-8, 420567/2016-0]; AbbVie [1097737]; BayerBayer AG [1097737]; Boehringer IngelheimBoehringer Ingelheim [1097737]; Genome Canada through Ontario Genomics Institute GrantGenome Canada [1097737, OGI-055]; GlaxoSmithKlineGlaxoSmithKline [1097737]; JanssenJohnson & Johnson USAJanssen Biotech Inc [1097737]; Lilly CanadaEli Lilly [1097737]; MerckMerck & Company [1097737]; Novartis Research Foundation [1097737]; Ontario Ministry of Economic Development and Innovation [1097737]; PfizerPfizer [1097737]; TakedaTakeda Pharmaceutical Company Ltd [1097737]; Wellcome Trust GrantWellcome Trust [1097737, 092809/Z/10/Z]; Canada Foundation for InnovationCanada Foundation for Innovation; NSERCNatural Sciences and Engineering Research Council of Canada; University of Saskatchewan; Government of Saskatchewan; Western Economic Diversification Canada; National Research Council Canada; CIHRCanadian Institutes of Health Research (CIHR

    Systematic Genetic Screens Reveal the Dynamic Global Functional Organization of the Bacterial Translation Machinery

    Get PDF
    Bacterial protein synthesis is an essential, conserved, and environmentally responsive process. Yet, many of its components and dependencies remain unidentified. To address this gap, we used quantitative synthetic genetic arrays to map functional relationships among >48,000 gene pairs in Escherichia coli under four culture conditions differing in temperature and nutrient availability. The resulting data provide global functional insights into the roles and associations of genes, pathways, and processes important for efficient translation, growth, and environmental adaptation. We predict and independently verify the requirement of unannotated genes for normal translation, including a previously unappreciated role of YhbY in 30S biogenesis. Dynamic changes in the patterns of genetic dependencies across the four growth conditions and data projections onto other species reveal overarching functional and evolutionary pressures impacting the translation system and bacterial fitness, underscoring the utility of systematic screens for investigating protein synthesis, adaptation, and evolution

    Ribosome-Dependent ATPase Interacts with Conserved Membrane Protein in Escherichia coli to Modulate Protein Synthesis and Oxidative Phosphorylation

    Get PDF
    Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency

    Identification of An Ionized-Donor-Bound-Exciton Transition in GaN

    No full text
    The transition involving an exciton bound to an ionized donor has been identified in GaN. The linewidth of the transition was not sufficiently narrow to permit identification from Zeeman studies. Instead, an alternative series of measurements including energy ordering of the ionized-donor-bound exciton with respect to the neutral-donor-bound exciton, line widths of the above two excitons, screening studies and electron bombardment measurements were used to identify the transition. (C) 1997 Elsevier Science Ltd

    Identification of An Ionized-Donor-Bound-Exciton Transition in GaN

    No full text
    The transition involving an exciton bound to an ionized donor has been identified in GaN. The linewidth of the transition was not sufficiently narrow to permit identification from Zeeman studies. Instead, an alternative series of measurements including energy ordering of the ionized-donor-bound exciton with respect to the neutral-donor-bound exciton, line widths of the above two excitons, screening studies and electron bombardment measurements were used to identify the transition. (C) 1997 Elsevier Science Ltd

    Exploring the Impact of PARK2 Mutations on the Total and Mitochondrial Proteome of Human Skin Fibroblasts

    No full text
    Mutations in PARK2 gene are the most frequent cause of familial forms of Parkinson\u2019s disease (PD). This gene encodes Parkin, an E3 ubiquitin ligase involved in several cellular mechanisms, including mitophagy. Parkin loss-of-function is responsible for the cellular accumulation of damaged mitochondria, which in turn determines an increment of reactive oxygen species (ROS) levels, lower ATP production, and apoptosis activation. Given the importance of mitochondrial dysfunction and mitophagy impairment in PD pathogenesis, the aim of the present study was to investigate both total and mitochondrial proteome alterations in human skin fibroblasts of PARK2-mutated patients. To this end, both total and mitochondria-enriched protein fractions from fibroblasts of five PARK2-mutated patients and five control subjects were analyzed by quantitative shotgun proteomics to identify proteins specifically altered by Parkin mutations (mass spectrometry proteomics data have been submitted to ProteomeXchange with the identifier PXD015880). Both the network-based and gene set enrichment analyses pointed out pathways in which Rab GTPase proteins are involved. To have a more comprehensive view of the mitochondrial alterations due to PARK2 mutations, we investigated the impact of Parkin loss on mitochondrial function and network morphology. We unveiled that the mitochondrial membrane potential was reduced in PARK2-mutated patients, without inducing PINK1 accumulation, even when triggered with the ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). Lastly, the analysis of the mitochondrial network morphology did not reveal any significant alterations in PARK2-mutated patients compared to control subjects. Thus, our results suggested that the network morphology was not influenced by the mitochondrial depolarization and by the lack of Parkin, revealing a possible impairment of fission and, more in general, of mitochondrial dynamics. In conclusion, the present work highlighted new molecular factors and pathways altered by PARK2 mutations, which will unravel possible biochemical pathways altered in the sporadic form of PD
    corecore