
Resource
Systematic Genetic Scree
ns Reveal the Dynamic
Global Functional Organization of the Bacterial
Translation Machinery
Graphical Abstract
Highlights
d Conditional genetic interaction maps underlying microbial

protein synthesis

d Identification of functionally associated genes, pathways,

and adaptive responses

d Striking protein synthesis defects upon the loss of identified

unannotated genes

d Links among connectivity, conditional rewiring, and

evolutionary adaptation
Gagarinova et al., 2016, Cell Reports 17, 904–916
October 11, 2016 ª 2016 The Author(s).
http://dx.doi.org/10.1016/j.celrep.2016.09.040
Authors

Alla Gagarinova, Geordie Stewart,

Bahram Samanfar, ..., Eric D. Brown,

Mohan Babu, Andrew Emili

Correspondence
andrew.emili@utoronto.ca

In Brief

Gagarinova et al. used Escherichia coli

synthetic genetic arrays to map genetic

interactions underlying protein synthesis.

The data revealed functionally

overlapping genes, pathways, and

adaptive responses, as well as the

functions of previously uncharacterized

genes required for normal translation. The

results have implications for evolutionary

studies of biological systems.

mailto:andrew.emili@utoronto.ca
http://dx.doi.org/10.1016/j.celrep.2016.09.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2016.09.040&domain=pdf


Cell Reports

Resource
Systematic Genetic Screens Reveal
the Dynamic Global Functional Organization
of the Bacterial Translation Machinery
Alla Gagarinova,1,2 Geordie Stewart,3 Bahram Samanfar,4,5 Sadhna Phanse,2,6 Carl A. White,2 Hiroyuki Aoki,6

Viktor Deineko,6 Natalia Beloglazova,7 Alexander F. Yakunin,7 Ashkan Golshani,4 Eric D. Brown,3 Mohan Babu,2,5

and Andrew Emili1,2,8,*
1Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
2Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
3Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, McMaster University,
Hamilton, ON L8N 3Z5, Canada
4Department of Biology and the Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
5Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada
6Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
7Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
8Lead Contact

*Correspondence: andrew.emili@utoronto.ca
http://dx.doi.org/10.1016/j.celrep.2016.09.040
SUMMARY

Bacterial protein synthesis is an essential, conserved,
and environmentally responsive process. Yet, many
of its components and dependencies remain uniden-
tified. To address this gap, we used quantitative syn-
thetic genetic arrays to map functional relationships
among >48,000 gene pairs in Escherichia coli under
four culture conditions differing in temperature
and nutrient availability. The resulting data provide
global functional insights into the roles and associa-
tions of genes, pathways, and processes important
for efficient translation, growth, and environmental
adaptation. We predict and independently verify the
requirement of unannotated genes for normal transla-
tion, including a previously unappreciated role of
YhbY in 30S biogenesis. Dynamic changes in the pat-
terns of genetic dependencies across the four growth
conditions and data projections onto other species
reveal overarching functional and evolutionary pres-
sures impacting the translation system and bacterial
fitness, underscoring the utility of systematic screens
for investigating protein synthesis, adaptation, and
evolution.

INTRODUCTION

Protein synthesis is a complex, essential, and adaptive process,

orchestrated by ribosomes and a multitude of accessory factors

that translate different mRNAs to meet changing physiological

demands. The central role of protein synthesis in bacterial

growth and fitness is emphasized by its high energy consump-

tion (up to 40% of total E. coli energy turnover; Wilson and

Nierhaus, 2007), the copiousness of its components during
904 Cell Reports 17, 904–916, October 11, 2016 ª 2016 The Author(s
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exponential growth (ribosomes constitute up to 50% of E. coli

dry cell mass; Kjeldgaard and Gausing, 1974), and the fact that

it is targeted by many antimicrobials (e.g., aminoglycosides

and macrolides; Nikolay et al., 2016).

Yet, despite broad scientific interest spanning decades, many

important knowledge gaps remain. For example, the complete

set of factors needed for normal ribosome biogenesis is un-

known (Kaczanowska and Rydén-Aulin, 2007). Furthermore,

while ribosome assembly is closely coupled to cell growth,

how these two processes are coordinated is unclear (Asato,

2005). Likewise, while translational error rates are known to

vary dramatically among different physiological, mutant, and

transcript sequence contexts (e.g., Poole et al., 2004), the fac-

tors governing fidelity are not fully understood.

Highly complex biological systems such as the bacterial

translational machinery clearly present a great challenge to

experimental biologists. To address this complexity and improve

understanding, the role of individual components (genes and

proteins) is established, often using cell biology, genetic, and

biochemical approaches. For example, the functional relation-

ships of the individual components to each other can be

measured using a qualitative genetic screen. Here, pairs of

genes are simultaneously mutationally inactivated and the net

phenotypic effect (which may be neutral, greater than expected

based on the single gene phenotypes, or less than expected) in-

forms us of the functional relationship between the two genes

(i.e., an epistatic/functional relationship or genetic interaction

[GI]). Thus, gene pairs may show positive (i.e., alleviating or sup-

portive), negative (aggravating or antagonistic), or neutral (i.e., no

functional overlap detected) relationships. Recent develop-

ments in large-scale GI screen technology offer the potential

to produce GI maps in a system-wide manner under different

environmental conditions (Bandyopadhyay et al., 2010). These

datasets can substantially improve understanding of the global

molecular architecture of the processes involved, and they can

serve as the basis for subsequent studies, both experimental
).
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and computational. Notably, pairwise GI data can be trans-

formed into higher order modular maps, where the modules

represent functionally coherent sets of genes, protein com-

plexes, and/or biochemical pathways.

Decades of investigations of bacterial translation included for-

ward genetic screens that have led to the ad hoc identification

and characterization of individual E. coli protein synthesis genes

and pairwise dependencies (e.g., new translation genes identi-

fied as suppressors of temperature-sensitivemutations in known

translation factors; see Gagarinova and Emili, 2015 and refer-

ences therein). However, progress in the systematic global map-

ping of GIs underlying bacterial protein synthesis has been

limited (Gagarinova and Emili, 2015). For example, only five

translation genes have been subjected to E. coli synthetic

genetic array (eSGA) screens in a single condition, and none

were assessed using analogous genetic interaction analysis

technology for E. coli (see Babu et al., 2014, Gagarinova and

Emili, 2012, and references therein). Thus, few GIs have been re-

ported to date for the bacterial protein synthesis machinery (see

Gagarinova and Emili, 2015 and references therein). Even less is

known about how this connectivity is impacted by changing

environmental demands.

We therefore reasoned that comprehensive quantitative GI

surveys in E. coli would be especially informative for addressing

gaps in our understanding of bacterial translation (Gagarinova

and Emili, 2012, 2015). To this end, we used high-throughput

eSGA technology to systematically examine GIs for translation

genes and for representatives of uncharacterized genes and

other functional categories in four conditions (Figures 1A and

1B). In addition to the standard eSGA condition, we investigated

genetic dependencies at both low and high temperatures in rich

media (Luria-Bertani [LB]) and under standard temperature in

minimal media to approximate, in the laboratory, adjustments

in temperature and nutrient availability seen during a normal

bacterial life cycle. Briefly, we arrayed a collection of E. coli F�

recipient strains, each bearing a kanamycin (Kan)-marked mu-

tation of a single gene, onto 384-colony plates. We then conju-

gated the array to high-frequency recombination (Hfr) E. coli

donor strains, each with a single chloramphenicol (Cm)-marked

query mutation, to generate and test all possible pairwise donor-

recipient mutant gene combinations.

After chromosomal transfer and homologous recombination,

viable double mutants were grown on Cm- and Kan-containing

media in each of the four selected conditions (Figure 1A). After

outgrowth, double-mutant fitness (i.e., growth) was determined

by measuring colony sizes. GI relationships within each condi-

tion were then recorded as GI scores (or static GI scores),

calculated by comparing the observed double-mutant fitness

to predictions based on a model assuming null non-interaction

between genes (Figure 1C). Finally, to quantitatively and statisti-

cally evaluate GI rewiring (i.e., GI change) underlying adaptation

to each of the three additional selected conditions, we calculated

differential GI scores (Figures 1D and 1E).

As expected, given the tight association between protein syn-

thesis and microbial growth (Asato, 2005), GIs in all tested con-

ditions involved a bona fide translation gene significantly more

frequently than was expected by chance (i.e., translation gene

GIs were overrepresented in all static networks), highlighting
the centrality of protein synthesis for growth in all tested condi-

tions. Analysis of these static GI maps revealed modularity and

high connectivity between functionally related components,

leading to the identification and independent verification of

genes required for normal translation. These included yhbY, a

broadly conserved gene (Barkan et al., 2007), for which we es-

tablished a previously unappreciated role in 16S rRNA matura-

tion and 30S ribosomal assembly. Our findings are especially

notable in view of the lack of phenotypic effect of deleting anno-

tated protein synthesis genes (e.g., rlmJ; Golovina et al., 2012).

In contrast, while GI rewiring between conditions was

observed, it did not predominantly center on protein synthesis.

Rather, GI patterns of translation genes (including translation

initiation, elongation, and termination factors; translation regula-

tors; and ribosomal (r-) proteins; see Table S1) changed relatively

little between conditions. We also found other patterns in our GI

data. For example, proteolysis genes interacted significantly less

frequently than expected in all static GI networks, and localiza-

tion and transport genes were enriched among all differential

GI datasets.

As we further detail below, our static and differential GI net-

works reflected known functions and provided insights about

previously underappreciated relationships. The full set of GI

maps is a useful resource for guiding detailed gene function

studies and for investigating the molecular underpinnings of

environmental adaptation (Figure 1F). Projections of these data

onto other species provide insights into the evolutionary pres-

sures governing gene conservation and genetic exchange.

RESULTS

Comprehensive System-wide eSGA Screens
We used our robotic eSGA screening platform to generate all

possible pairwise double-mutant combinations from a defined

set of 312 genes (49 essential and 263 non-essential), encom-

passing virtually all annotated translation factors, ribosomal

and ribosome biogenesis genes, in addition to select unanno-

tated genes and representatives of other essential systems,

like cell division (Table S1; Figure 1B; Supplemental Experi-

mental Procedures). In total, we assessed functional relation-

ships for >48,000 non-redundant gene pairs under the following

four different culture conditions: on LB rich media at standard

(32�C), low (16�C), and high (42�C) temperature (RM, LT, and

HT, respectively), and on minimal media (MM) at 32�C (Fig-

ure 1A). To ensure data quality, we included multiple replicates

and stringent controls, e.g., independent verification of double-

mutant colony sizes and ensuring that selection with Cm or

Kan, which target translation, did not confound the fitness of pro-

tein synthesis gene mutants (Figure S1A). The reproducibility of

the double-mutant colony size measurements from independent

conjugations (R = 0.8, Figure S1B) was consistent with high data

quality.

GI Scoring
We evaluated six distinct GI-scoring approaches (see the Exper-

imental Procedures, Table S2, and Figures S1D–S1G and S2).

Briefly, GI scoring was optimized and benchmarked against

several published datasets to describe the following: (1) the
Cell Reports 17, 904–916, October 11, 2016 905



Figure 1. Mapping GI Networks Underlying Protein Synthesis in E. coli

(A) Schematic of eSGA screens. After bacterial conjugation (mating of single mutants) and selection, double-mutant colony sizes were monitored under RM, LT,

HT, and MM culture conditions (Cm, chloramphenicol; Kan, kanamycin; R, resistance; RM, standard rich media; LT, low temperature; HT, high temperature; MM,

minimal media).

(B) Screens encompassed all known and amenable to eSGA translation and ribosome biogenesis genes, representatives of other core bacterial processes, and

selected unannotated genes.

(C) Multiplicative model GI scores (also referred to as static or within-condition GI scores) were calculated as the difference between the observed double-mutant

colony size and the product of the corresponding individual single-mutant colony sizes (i.e., expected fitness). Significant negative or positive GI scores reflect

double-mutant fitness measurements significantly worse (aggravating) or better (alleviating) than expected, respectively.

(D) RM-MM differential GIs reflect differences (or rewiring) between the RM and MM static GIs; a diagrammatic example is shown (see also E).

(E) Scatterplot comparing RM and MM static GI scores, with relationships consistent with rewiring (i.e., significant RM-MM differential GI scores) at p values %

0.01 highlighted in red and blue. RM-LT and RM-HT differential GI scores were analogously calculated.

(F) Analyses of static and differential GI networks revealed gene function(s), pathway crosstalk, and insights about rewiring within the framework of environmental

adaptation.

See also Figures S1 and S2; Tables S1, S2, S3, and S5; and the main text for references and details.
magnitude and polarity (i.e., positive or negative) of the direct GI

between each gene pair, (2) the relationship between each gene

pair under different environmental conditions, and (3) the similar-

ity of GI profiles for each gene pair. This latter metric captures

broadly shared functions by quantifying the extent of interaction

sharing by any two genes.
906 Cell Reports 17, 904–916, October 11, 2016
According to the selected, functionally informative product (or

multiplicative) model of GIs, the fitness of a strain with two func-

tionally unrelated mutations is expected to equal the product of

the fitness of the respective single mutants (Mani et al., 2008);

a GI score is then calculated as the difference between the

observed and expected double-mutant fitness measurements



(Figures 1C, S1D–S1G, and S2; Tables S2 and S3; Supplemental

Experimental Procedures). Benchmarking revealed that this

method of scoring eSGA data captures insights missed by con-

ventional forward suppressor screens (Figure S2C; Table S2;

Supplemental Experimental Procedures). Furthermore, signifi-

cant product GI scores were recorded for most translation

gene pairs previously reported to interact genetically (Fig-

ure S1D). Data informativeness was also evident in a comple-

mentary metric based on the overall similarity of GI patterns

(i.e., GI profile Pearson correlation coefficients [GI-PCCs]; Table

S4), with both GI scores and GI-PCCs reflecting functional

relationships (Figure S2; Table S2).

GI Rewiring between Conditions
To statistically evaluate GI rewiring or quantitative differences

between RM static GI scores and their respective counterparts

in each of the other conditions (Figure S3A), we calculated dif-

ferential GI scores (Bandyopadhyay et al., 2010). Thus, for

example, RM-MM differential GI network reflects rewiring be-

tween RM and MM static GI networks (Figures 1D and 1E; Table

S5; Supplemental Experimental Procedures). In all differential

GI datasets, score directionality (i.e., positive or negative) indi-

cates how the double-mutant GI score in RM compares to that

in the second of the two conditions (Figures 1D and 1E). For

instance, RM-MM significant positive differential GI indicates

that the GI score for the pair of genes is significantly reduced

in MM compared to RM (i.e., the double-mutant fitness is higher

in RM).

As expected from differences between static GIs (Figure S3A),

GI rewiring between conditions was observed (Table S5). Specif-

ically, we detected 9,419, 5,856, and 5,892 RM-MM, RM-LT, and

RM-HT differential GIs, respectively, with p values % 0.05 (cor-

responding counts of extreme differential GIs with p values %

0.001 were 1,459, 785, and 731, respectively). These numbers

indicate that MM is most different from RM in terms of GIs. Clus-

tering autocorrelations (i.e., Pearson correlation coefficients

of each gene’s GI profile in RM versus another condition; Table

S6) indicated that MM was most different from RM in terms of

GI patterns (Figures S3B and S3C).

GI rewiring is functionally informative. For example, an unan-

notated gene, yjbM, was enriched (p value 0.018) for RM-LT

negative differential GI scores with cell envelope-related locali-

zation genes (Tables S1 and S5). These included ftsY, an inner

membrane protein with pleiotropic effects on cell division (Vice-

nte et al., 2006), suggesting a potential differential LT effect of

yjbM deletion on cell division. Consistent with this,DyjbMmutant

cell lengths were significantly different from wild-type at low, but

not at standard, temperature (Figure S3D).

Protein Synthesis Is Central to Fitness but Shows
Limited Rewiring in Response to Environmental Change
Translation genes were significantly overrepresented in all signif-

icant static GI datasets (Figure 2A), attesting to the translation’s

importance for growth in all respective conditions. Consistent

with this, bona fide translation genes exhibited substantive

crosstalk within conditions (Figures 2B and S3E). In contrast,

translation genes were not overrepresented among differential

GIs (Figure 2A). Rather, genes whose products directly partici-
pate in protein synthesis (i.e., genes in translation manually

curated category, which includes translation initiation, elonga-

tion, and termination factors; translation regulators; and r-pro-

teins as well as genes in r-protein categories; see Table S1)

tended to have high autocorrelations (Figure 2C; Table S6),

emphasizing the entrenched dependencies of the core transla-

tion machinery. There were also interesting patterns of GIs

across functional categories in static GI datasets. For example,

enrichments for alleviating interactions among translation,

tRNA production, and chaperoning and protein folding cate-

gories (Figure 2D) are consistent with sub-processes interacting

with each other as modules in a pathway leading to protein pro-

duction, with impaired translation reducing cellular demand for

charged tRNA and thereby lifting pressure on a generalist

chaperoning machinery. This is also consistent with increased

chaperone expression facilitating protein production in E. coli

(e.g., Kolaj et al., 2009).

Proteolysis genes stood out in contrast to translation genes as

interacting significantly less frequently than expected in all static

networks, which was consistent with infrequent process-level

crosstalk of proteolysis genes (Figures 2A, S3E, and S4A).

Likewise, in contrast to translation, GIs underlying several

categories had undergone significant rewiring (Figure 2A). For

example, localization and transport genes were enriched among

all differential GI datasets; RM-LT differential GIs were enriched

for chaperoning and protein folding genes; and cell division dif-

ferential GIs were significantly overrepresented in the RM-MM

dataset (Figure 2A).

Taken together, these observations reveal pathway-level

crosstalk in static GI maps and GI rewiring under different envi-

ronmental conditions, while highlighting the centrality and en-

trenched dependencies of the core protein synthetic machinery.

GI Networks Predict Genes Vital for Normal Translation
The rich data (Table S2; Figure S2) allowed us to predict the func-

tions of unannotated genes affecting translation in RM with high

precision. We first determined GI-based associations of each

gene to translation (Figures S4B and S4C) to systematically iden-

tify and focus on unannotated genes with the most prominent

links to translation. Strikingly, when we ranked all genes by the

total number of associations with translation (Figures S4B and

S4C), several unannotated genes outranked most known trans-

lation genes (Figure 3A), pointing to possible roles in protein

synthesis. From these, we sampled 12, showing a range of asso-

ciations but tending toward higher association ranks, to verify

roles in translation (Figure 3). First, we assessed translational fi-

delity in each of the corresponding single mutants in comparison

to a parental wild-type strain or single mutants lacking bona fide

translation genes (i.e., DrlmE, Drng, or DlepA). For this, we used

reporter plasmids encoding either wild-type beta-lactamase

(LacZ) or mutant variants that are non-functional unless a

specific translation error occurs.

Strikingly, the deletion of each of these candidate genes re-

sulted in impaired translational fidelity (Figure 4A) comparable

to, or greater than, that observed in the absence of translational

proofreading factor EF4 (LepA) (Qin et al., 2006) or Rng or RlmE,

whose deletions increase or reduce error rates (Roy-Chaudhuri

et al., 2010; Widerak et al., 2005), respectively. For example,
Cell Reports 17, 904–916, October 11, 2016 907



Figure 2. GI Network Connectivity and Rewiring under Different Culture Conditions

(A) Overrepresentation of select curated functional categories in the static and differential GI networks. Multiple-testing-corrected hypergeometric enrichment

p values (%0.05) are shown.

(B) Schematic summarizing enrichments for RM GIs between annotated translation genes (bold, underlined) and components of other categories. Shared

memberships between categories with combined similarity coefficient p values% 53 10�3 and false discovery rates (FDRs)% 0.1 are shown as edges (Merico

et al., 2010).

(C) Translation, large ribosomal subunit protein, and small ribosomal subunit protein genes tend to have high autocorrelations (Gene Set Enrichment Analysis

(GSEA) nominal p values < 0.01 and FDR < 0.2). A representative RM-MMGSEA plot for translation genes is shown. Enrichment score plot (at the top) expresses a

Kolmogorov-Smirnov-like statistic, reflecting the degree to which the values for the genes within the selected category (i.e., translation in this case, black vertical

lines in the middle of the plot) are overrepresented at the extremes of the entire pre-ranked list (bottom).

(D) Example of process-level crosstalk across conditions. Heatmaps compare enrichments for alleviating GIs between select categories inMM versus RM and LT

versus HT. Corresponding process-level pathway diagram with arrows, representing enrichments for between-process alleviating GIs, is shown at right; this is

consistent with alleviating GIs, expected between members of a gene-level pathway (Gagarinova and Emili, 2012).

See also Figures S3 and S4A; Tables S1, S3, S5, and S6; and the main text for references and details.
deleting ychP, yjiA, yhgF, ycbZ, yigZ, ybfN, or yggE increased the

rate of UGA stop codon readthrough 50- to 90-fold over base-

line. Complementation plasmids, but not mock control plasmids,

rescued the fidelity and fitness defects (Figures 4B and S4D–

S4F), confirming that the phenotypes were target related and

not due to spurious secondary mutations.

We also examined ribosomal profiles and 23S rRNA process-

ing in the corresponding mutants (Figures 4C, 4D, and S4G).

Phenotype and GI differences between these translation-associ-
908 Cell Reports 17, 904–916, October 11, 2016
ated genes (Figures 3, 4, and S4G; Tables S3, S4, S5, and S6)

suggested that they are likely involved in different aspects of

the translation process.

GIs Predict the Role of YhbY in 16S rRNA Processing
YhbY is a broadly conserved putative RNA-binding protein

(Barkan et al., 2007). Consistent with our data (Figures 3

and 4; Table S3), yhbY was shown to be required for

normal 23S rRNA processing and 50S biogenesis (Barkan



Figure 3. GIs Implicate Unannotated Genes in Protein Synthesis

(A) Certain unannotated genes supersede annotated translation genes in terms of the number of GI-derived associations to translation. Genes selected for follow-

up experiments are highlighted in bold.

(B) Extensive associations of selected unannotated genes with translation-related categories, grouped according to functional similarity, with nodes (genes and

categories) and edges (associations) placed to simplify the display. Examples of relationships used to derive associations to translation categories (highlighted

with dashed lines) are illustrated.

See also Tables S1, S3, and S4 and Figure S4.
et al., 2007). However, our GI data also suggested links to

the assembly of the 30S subunit (Figure 3; Table S3). This

pointed to a potentially underappreciated impact of YhbY

on ribosome biogenesis. To examine if GI links to 30S bio-

genesis reflected noise in the data or provided real new func-

tional information, we chose YhbY for a closer functional

examination.

The rRNA precursor transcript is cleaved by RNase III (Rnc) to

release precursor 17S, 23S, and 5S rRNA and tRNA fragments

(Kaczanowska andRydén-Aulin, 2007; Figure 5A). During normal

30S subunit biogenesis, 17S rRNA precursor is then cleaved by

nucleases Rne, Rng, Rnr, Rnb, Rph, and Pnp, with any one of

Rph, Rnr, Rnb, and Pnp being sufficient for the 30 end of 16S

rRNA cleavage (Figure 5A; Kaczanowska and Rydén-Aulin,

2007; Sulthana and Deutscher, 2013). Cleavage and modifica-

tion of rRNA and concomitant r-protein incorporation are facili-

tated by accessory factors (Era, RimM, RimP, RbfA, YbeY, and

RsgA; Figure 5A; Davies et al., 2010; Kaczanowska and Ry-

dén-Aulin, 2007; Nord et al., 2009). GIs of yhbY with a number

of genes required for 30S biogenesis (Figure 5A) are consistent

with YhbY’s involvement in 30S biogenesis.

To examine this directly, we performed primer extension

assays on wild-type and DyhbY strains, which established the

preferential accumulation of incompletely processed 50-end
16S rRNA cleavage precursor in the mutant cells (Figure 5B).

Consistent with these results, we identified YhbY in the 30S as

well as 50S fractions (Figure S4H).

YhbY Is Required for Proper 30S and 50S Subunit
Assembly
Given that rRNA processing occurs as r-proteins are sequen-

tially incorporated during subunit assembly (see Kaczanowska
and Rydén-Aulin, 2007 and references therein), we hypothe-

sized that yhbY depletion perturbs the binding of specific

30S r-proteins and biogenesis factors. Indeed, quantitative

mass spectrometry revealed significantly reduced amounts

(1.4-, 28-, 2-, and 2-fold, respectively) of S5, RimM, Rne,

and RsmC (a 16S rRNA methyltransferase that binds the

30S subunit, but not free rRNA; Tscherne et al., 1999) in the

30S fraction in the mutant relative to wild-type, whereas S13

and RbfA were significantly increased (1.6- and 2.4-fold,

respectively). These changes support our GI-based predic-

tions, providing independent evidence for the requirement of

YhbY for normal 30S biogenesis.

While YhbY previously was shown to impact 50S subunit

biogenesis (Barkan et al., 2007), which 50S r-proteins are

affected was not known. Our data addressed this. Notably,

yhbY interacts genetically with genes encoding r-proteins L1,

L4, L23, L32, and L35, which are added at early through

late stages of 50S biogenesis (Chen and Williamson, 2013).

Correspondingly, we detected changes in the abundances of

various large subunit r-proteins in the mutant relative to the

wild-type in 30S fraction, where early 50S subunit biogenesis

intermediates were found (Figure 6). Only late-binding 50S

r-proteins were affected in the 50S fraction (Figure 6). In addi-

tion, we found that the abundance of DeaD, an RNA helicase

required for normal 50S biogenesis and 50 cleavage of 23S

rRNA (see Kaczanowska and Rydén-Aulin, 2007 and refer-

ences therein), was reduced 2-fold in 30S and 50S fractions

in the mutant relative to the wild-type. Similarly, in the 50S

fraction, the abundances of the 23S rRNA pseudouridine syn-

thases RluB and RluC (see Kaczanowska and Rydén-Aulin,

2007 and references therein) as well as Rne were reduced

2-, 2-, and 4-fold, respectively.
Cell Reports 17, 904–916, October 11, 2016 909



Figure 4. Normal Protein Synthesis Requires Predicted Translation-Associated Unannotated Genes

(A) Translational fidelity in selected mutants, positive controls (DrlmE, Drng, and DlepA), and wild-type (WT). Plot shows frameshift or stop codon skipping rates,

as reflected in b-galactosidase (b-gal, functional LacZ) activity after normalizing relative to WT and correcting for differences in native (non-mutant) LacZ

expression. *, significantly different mutant and WT measurements, Bonferroni multiple testing-corrected two-tailed t test, p value % 0.05.

(B) Complementation, but not mock control plasmids, rescued significant mutant translational fidelity defects (from A). All measurements were normalized to the

corresponding WT controls.

(C) Deletion of YhbY leads to an abnormal ribosomal profile with altered ratios of subunits and 70S ribosomes. Representative ribosomal profile plots for DyhbY

and WT, mean ratios, and two-tailed t test p values are shown.

(D) Primer extension analysis of 5’-end tails of 23S rRNA in WT and selected mutant strains.

Combined measurements reflect means of at least three independent replicates; error bars represent standard deviation (SD).

See also Figures S4D and S4G.
DISCUSSION

Protein synthesis is an elaborate, conserved, and adaptive pro-

cess. Forward genetic screens have led to crucial discoveries,

such as the identification of ribosome biogenesis factors and

translational fidelity control dependencies (e.g., see Gagarinova

and Emili, 2015 and references therein). However, few GIs had

been reported for the E. coli protein synthesis machinery. Hence,

for this study, we undertook systematic large-scale screening to
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shed more light on the functional organization of the E. coli pro-

tein synthesis machinery. To facilitate follow-up investigations,

all our GI data are freely available via a dedicated online portal

(http://ecoli.med.utoronto.ca/eMap/PS/).

As expected, translation genes were highly connected in all

static GI maps (Figures 2A, 2B, and S3E), consistent with the

importance of protein synthesis for growth across conditions.

The utility of these networks is highlighted by the resulting func-

tional insights, particularly the inference of unannotated genes

http://ecoli.med.utoronto.ca/eMap/PS/


Figure 5. YhbY Is Required for 30S Biogenesis

(A) Schematic shows annotated RNases and co-factors required for efficient 16S rRNA cleavage and 30S biogenesis.

(B) Primer extension analysis showing the accumulation of 17S rRNA precursor in DyhbY cells, compared to WT (unequal variance two-tail t test p value < 0.01).

Averages of three independent measurements are shown; error bars reflect SDs.

(C) GIs of yhbY with rimM or rimP are consistent with functional buffering with respect to influence on S13 and S5 incorporation.

(D) GI and proteomics data implicate YhbY in decoding center formation and a potential 30S biogenesis checkpoint.

See also Table S3 and the main text for references and details.
required for normal protein synthesis, which is especially signif-

icant in view of the extensive previous studies and the limited

deletion phenotypes of certain annotated components (e.g.,

rlmJ; Golovina et al., 2012).

Independent evidence supports the involvement of some

of the identified genes in protein synthesis. For example, YbcJ

has an r-protein S4-like domain that is predicted to bind struc-

tured RNA (Volpon et al., 2003). YciH is a homolog of eukaryotic

translation initiation factor 1 (eIF1) with effects on translational

output in vivo and on translation initiation fidelity in vitro (see Os-

terman et al., 2015 and references therein), which are consistent

with the mutant translational fidelity defects (Figures 4A and 4B).

YigZ is a widely conserved nucleic acid-binding protein, whose

closest mammalian homolog, IMPACT, is involved in transla-

tional regulation in the developing nervous system (see Roffé

et al., 2013 and references therein). Overexpressing yggE

increases E. coli growth rate (Kim et al., 2005), consistent with

a role in a growth rate-limiting process. YjiA is a member of

the ubiquitous, but largely uncharacterized, COG0523 family

of putative GTPases (Sydor et al., 2013), which is notable
because GTP hydrolysis is required for many steps in transla-

tion (see Kaczanowska and Rydén-Aulin, 2007 and references

therein). While the diversity of these observations and corre-

sponding mutant deletion phenotypes (Figures 3, 4, and S4G;

Tables S3, S4, S5, and S6) indicate different roles, the absence

of annotated homologs and high gene conservation in a num-

ber of instances suggest our findings are broadly relevant.

Hence, while their exact mechanistic roles remain to be estab-

lished, our GI data can motivate and help guide future follow-up

investigations.

YhbY is an illustrative example. It previously was reported

to be required for normal 23S rRNA maturation and 50S

biogenesis (Barkan et al., 2007). Our study indicates that

YhbY likely affects 50S biogenesis at an early stage. Specif-

ically, reduced incorporation of the early-binding L22, which

does not exchange between ribosomes and r-protein pools

in vitro (Pulk et al., 2010), in DyhbY mutants suggests that

YhbY is required for normal 50S biogenesis at or before the

point of L22 incorporation (Figure 6). The alleviating GI between

genes encoding YhbY and L4 (Table S3), which is incorporated
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Figure 6. YhbY Is Required for Normal 50S

r-Protein Incorporation

Schematic of large ribosomal subunit assembly,

showing relative r-protein abundance differences

between DyhbY and WT in the 30S fraction,

where early large ribosomal subunit biogenesis

intermediates are found, and in the 50S fraction,

where more mature products are present (assembly

groups and map based on Chen and Williamson,

2013). Relative protein abundances were measured

by precision mass spectrometry; arrows within the

assembly map indicate influence on binding (i.e., the

binding of proteins at arrow tips depends on protein

or rRNA at arrow origin, with wider lines indicating

stronger effects).
cooperatively with L22 during early 50S biogenesis (see Kacza-

nowska and Rydén-Aulin, 2007 and references therein), high-

lights the importance of YhbY for this step in the assembly of

the large ribosomal subunit.

The incorporation of a number of other 50S r-proteins,

including L28, was affected in the absence of YhbY (Figure 6).

While precursor pools tend to be larger for earlier binding r-pro-

teins, L28, one of the later binding 50S r-proteins, is a notable

exception (Chen et al., 2012; Chen and Williamson, 2013). As

L28 levels in 50S biogenesis precursors increased in the

absence of YhbY (Figure 6), YhbY may play a role in the correct

ordering of 50S r-protein incorporation.

Our GI data also indicated a previously unknown role of YhbY

in 30S biogenesis. For example, reduced abundance of S5 in

DyhbY 30S fraction and the alleviating GI between yhbY and

rpsE (encoding S5) are consistent with YhbY facilitating S5 incor-

poration (Table S3; Figure 5C). Moreover, the increased abun-

dance of S13 and the reduced abundance of S5 in DyhbY 30S

fraction and the aggravating GIs of yhbY with rimM or rimP are

consistent with YhbY functionally buffering (1) the inhibition of

S13 incorporation by RimM and (2) the facilitation of S5 incor-
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poration by RimM or RimP, which are

observed in vitro (Bunner et al., 2010) (Fig-

ure 5C). The loss of RimP results in the

depletion of S5, but not S13 (Sashital

et al., 2014), consistent with the GI be-

tween yhbY and rimP resulting from effects

on S5 incorporation (Figure 5C).

S5 is located near the ribosome-decod-

ing center and is important for translational

fidelity (see Gagarinova and Emili, 2015

and references therein), with reduced S5

recruitment and increased error rates in

DyhbY (Figures 4A, 4B, and 5C) potentially

manifesting defective decoding center

formation. As RsmA (KsgA) and RsmH are

16S rRNA methyltransferases, essential

for normal ribosomal fidelity and acting on

the 30S subunit (Desai and Rife, 2006; Ki-

mura and Suzuki, 2010), the aggravating

GIs of yhbYwith rsmA and rsmH (Figure 5D;

Table S3) may reflect negative cumulative
effects of reduced fidelity or, at least in the case of RsmA, failure

of one or more 30S biogenesis checkpoints. RsmA and RbfA

functions are linked to segregating immature and mature initia-

tion-competent 30S subunits (Connolly and Culver, 2013). In

the presence of excess RbfA, which was observed in the DyhbY

30S fraction (Figure 5D), RsmA is required for S21 incorporation,

16S rRNA maturation, translation initiation fidelity, and overall

translational capacity (Connolly and Culver, 2013). Hence, the

aggravating GI between yhbY and rsmAwe observed (Figure 5D)

is expected and underlines the consistency between our data

and the literature. Similarly, the increased abundance of ribo-

some-decoding site-binding RbfA, coincident with the reduction

in RimM in the DyhbY 30S fraction (Figure 5D), is consistent with

RbfA overexpression suppressing rimM� mutant fitness defects

(Bylund et al., 2001).While additional experiments arewarranted,

theaggravating rimM-yhbYand the alleviating rbfA-yhbYGIswith

coincident protein-level changes (Figure 5D) implicate YhbY in

30S biogenesis and in efficient RsmA-mediated (Connolly and

Culver, 2013) ribosome biogenesis checkpoint progression.

The GI maps also reveal many other potentially relevant and

interesting dependencies. For example, rimP is a 30S subunit



biogenesis factor whose deletion preferentially reduces fitness

at high temperature (Nord et al., 2009). Five of its ten RM-HT

differential GI with annotated genes were with cell division or

cell envelope-related localization genes, including secB and a

related dnaJ gene (see Table S5 and below). Notably, SecB

overexpression suppresses the temperature sensitivity and ag-

gregation phenotypes of a strain lacking DnaK, DnaJ, and trigger

factor (Ullers et al., 2004), of which only DnaJ results in tem-

perature sensitivity (Nichols et al., 2011). These significant differ-

ential GIs raise the hypothesis that the RimP requirement for

high-temperature adaptation may be linked to the roles of these

functionally related genes, particularly SecB and DnaJ.

A number of other specific hypotheses also arise from our GI

networks. First, the understanding of some functional relation-

ships, e.g., those underlying proteolysis, may require higher-or-

der (e.g., triple) mutation combinations (Figure S4A). Second,

given pronounced chaperoning and protein folding RM-LT rewir-

ing and enrichment for aggravating GIs in LT (Figures 2A and

S3E), genes with corresponding positive RM-LT differential GIs

are candidates for roles in protein folding.

Third, one can speculate that significant RM-MM differential

GIs (Table S5) reflect adaptation to growth on MM, including

anabolic pathway activation and transition to slower growth via

translation inhibition. While we did not focus on genes required

for translation inhibition, e.g., during stationary phase, our study

included several genes encoding translation-inhibiting factors.

Specifically, RsfA (RsfS) is a ribosome-silencing factor that im-

pairs subunit joining (Häuser et al., 2012). Strains lacking RsfA

show reduced viability in stationary cultures and delayed growth

after a shift from rich to poor growth medium (Häuser et al.,

2012). Ribosome modulation factor (RMF) and hibernation-pro-

moting factor (HPF) inhibit translation in stationary or slowly

growing cells by making 100S ribosomal dimers (Ueta et al.,

2008; Wada et al., 2000), while protein Y (pY; YfiA) inhibits trans-

lation by blocking the binding of aminoacyl-tRNA in cell-free

translation systems (Agafonov et al., 2001).

While the aforementioned translation-inhibiting genes did not

interact with each other genetically in RM (Table S3), significant

positive RM-MM differential GI occurred between rsfA and hpf

(p value 0.0019; Table S5). Furthermore, GIs of rsfA and hpf

with ftsY were significantly rewired between RM and MM

(p values 0.017 and 0.00015, respectively; Table S5), and a

strong RM-alleviating GI was observed between rsfA and ftsY.

Notably, depletion of FtsY was reported to lead to RMF upregu-

lation and the inhibition of translation (B€urk et al., 2009). These

data are consistent with (1) RsfA- and HPF-mediated translation

inhibition pathways buffering each other during the shift to min-

imal media (i.e., at least one translation inhibition mechanism

must be functional for normal adaptation to slower growth),

and (b) one or both ribosome-silencing pathways involving a

functional link to FtsY.

Significant GI rewiring between RM and MM also was re-

corded for rmf-rsfA and pY-hpf gene pairs (Table S5). HPF and

pYwere suggested to have opposite roles during 100S ribosome

dimer formation, with HPF deletion mutant producing no 100S

particles because pY inhibited their formation in the presence

of RMF (Ueta et al., 2005). The RM-MM differential GI between

hpf and pY (Table S5) reflects double-mutant fitness improve-
ment in MM compared to RM, consistent with the loss of both

genes allowing cells to adapt to slower growth by preventing

complete inactivation of RMF-mediated translation inhibition

(Table S5). These data point to previously underappreciated

functional links among ribosome-silencing factors, and they

exemplify how differential GI data can provide additional ave-

nues for understanding gene roles and relationships.

Fourth, while translation genes were not enriched among dif-

ferential GIs (Figure 2A), adaptation to changing environmental

contexts involved global rewiring of GIs underlying other pro-

cesses (e.g., localization and transport; Figure 2A). Therefore,

the close coupling between protein synthesis and growth (Asato,

2005) may be achieved not through the dramatic rewiring of

translation gene GIs as we expected, but through a combination

of some GI changes and adjustments via intrinsic balancing

mechanisms within the protein synthesis apparatus (Figure 2A).

The existence of such balancing mechanisms is supported by a

number of observations, including, for example, the synergistic

or opposing roles of specific residues and components of the

ribosome in translational fidelity control (e.g., see Ogle et al.,

2002 and references therein). At the same time, protein synthesis

apparatus has a huge capacity for adjustment, whichmay be uti-

lized during environmental adaptation. For example, peptidyl

transferase site reaction rates on ribosomes from E. coli versus

Thermus thermophilus, whose optimal growth temperature

is 35�C higher, both increase with temperature to a similar

maximum rate at their respective optima (Rodriguez-Correa

and Dahlberg, 2008). Nonetheless, overall protein synthesis

rates under optimal culture conditions are 10–15 times slower

in vivo compared to in vitro (Rodriguez-Correa and Dahlberg,

2008), which implies room for modulation. Combining multiple

point mutations in essential genes and rRNA with each other

and with whole or partial gene deletions may reveal the mecha-

nisms that serve to regulate protein synthetic activities on a

finer scale to map the smallest units required for performing

any given function and for ensuring successful environmental

adaptation.

Our results also have evolutionary implications. First, regard-

less of growth condition, the distributions of functionally informa-

tive GI scores were shifted toward positive (alleviating) values

(Figures S1G and S2; Supplemental Experimental Procedures).

Since random scores should center on zero (i.e., no interaction),

a similar trend in analogous yeast SGA studies was interpreted

as supporting the notion that genetic exchange (i.e., sexual

reproduction) improves fitness (Mani et al., 2008). Our data, simi-

larly, have implications for the longstanding debate over the

evolution of sexual reproduction (i.e., bacterial conjugation) (de

Visser and Elena, 2007; Otto, 2008), supporting an earlier conjec-

ture (Beerenwinkel et al., 2007) with more data, conditions, and

GI models. Second, our data suggest that gene essentiality

and the degree and type of connectivity alsomust be considered

when evaluating gene conservation (see the Supplemental

Experimental Procedures for details). Third, our data point

to questions regarding the apparent lack of conservation of

GI networks across species based on comparing single static

maps from each species (e.g., Roguev et al., 2008). As

gene- and process-level functional dependencies can change

significantly even between relatively similar conditions (e.g.,
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Figures 2A and S3), the GI patterns recorded for a single condi-

tion capture only a fraction of relationships important to an

organism’s fitness. Hence, more meaningful cross-species

comparisons would evaluate evolutionary rewiring in the context

of conditional rewiring. Given the high conservation of the protein

synthesis machinery (Figure S5), our GI maps represent an

excellent starting point for investigating evolutionary and envi-

ronmental changes in functional networks.
EXPERIMENTAL PROCEDURES

eSGA Screens and GI Scoring

Strain handling, donor construction, plate-based conjugation, double-mutant

generation, and colony imaging were performed essentially as previously

described (Babu et al., 2014; see the Supplemental Experimental Procedures

for details and additional controls). After mating and dual drug selection, viable

double mutants were replica pinned in 1,536-colony format and grown in the

following four conditions: standard/RM (LB, 32�C), LT (16�C, LB), HT (42�C,
LB), and MM (32�C, M9 minimal media). After standard plate imaging, colony

size measurement, and normalization, we calculated additive, multiplicative,

minimum fitness, log, log2, and E-score GI scores (see the Supplemental

Experimental Procedures for details). GI-PCCs were calculated after removing

30 kb linkage (Figure S1C). Probability values for GIs and GI-PCCs, after

filtering for 30 kb linkage and self-correlations, respectively, were determined

using a distribution-based approach (Babu et al., 2014). GI scores and

GI-PCCs were benchmarked by comparing the distributions for functionally

associated versus randomly drawn gene pairs using the Kolmogorov-Smirnov

non-parametric test as described previously (Babu et al., 2011) (see Table S2

and the Supplemental Experimental Procedures for details). Differential GIs

and p values (Table S5) were calculated as described previously (Bandyopad-

hyay et al., 2010). Autocorrelations (Table S6) were calculated by correlating

each gene’s GI pattern in RM with the same gene’s GI profile from each of

the other conditions after removing a 30-kb linkage suppression window.

Gene Functional Category Associations

Unless otherwise indicated, manually curated annotations were used for ana-

lyses and are referred to in the paper (Supplemental Experimental Procedures;

Table S1). Gene functional category associations were determined by parti-

tioning GI and GI-PCC RM networks and assigning functions to uncharacter-

ized genes based on the functions of annotated genes within their corre-

sponding sub-networks (see Figures S4B and S4C and the Supplemental

Experimental Procedures). For this, first, we created three datasets from prob-

ability-filtered (p value % 0.05) GI scores as follows: (1) positive, (2) negative,

and (3) union of positive and negative. Similarly, three GI-PCC datasets were

created for a total of six GI and GI-PCC datasets. Subsequently, each dataset

was partitioned into local sub-networks by either applying the Markov clus-

tering algorithm as described previously (see Hu et al., 2009 and references

therein) or by isolating the first neighbor network of each gene.

The lists of geneswithin each resulting sub-network were tested for overrep-

resentation of manually curated functional categories using the hypergeomet-

ric enrichment analysis via the Bingo Cytoscape plug-in (Maere et al., 2005).

Gene functional category associations for unannotated genes were estab-

lished as follows: if an uncharacterized gene was part of a Markov cluster con-

taining a greater than expected number of genes belonging to a particular

category, it was assigned the corresponding association; similarly, if a gene’s

first neighbor network was enriched for a given category, an association

between the gene and that function was made.

Associations to all translation categories, across network-partitioning

methods and datasets, were summed up for each gene. Genes were then

ranked by total number of associations (high to low); unannotated genes

with one or more associations to a translation category (Benjamini-Hochberg

multiple testing corrected p value % 0.05; Benjamini and Hochberg, 1995)

were included in Figure 3A. Gene functional category associations were simi-

larly determined for cell division in RM and LT to assess conditional roles, with

yjbM being selected for follow-up as a result.
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Phenotypic Assays and Other Analyses

BW25113 (parental Keio deletion/recipient strain, see Babu et al., 2014 and

references therein) was used as wild-type control in follow-up experiments

alongside select single-gene deletion mutants. Unless otherwise indicated,

RM growth condition was used. Primer extension (Nord et al., 2009); cell

staining, imaging, and length measurement (Babu et al., 2011); northern

blot hybridizations (Charollais et al., 2003); and translational fidelity assays

(O’Connor et al., 1992) were performed essentially as described previously,

at least in triplicate (see the Supplemental Experimental Procedures for

details).

Ribosomal subunits and ribosomes were separated by gradient sedimen-

tation (see the Supplemental Experimental Procedures for details). Protein

compositions of 30S and 50S peaks fromDyhbY andwild-type logarithmic cul-

tures (optical density 600 [OD600] of 0.3–0.4) were compared by combining
18O-based stable isotope labelingwith quantitative tandemmass spectrometry

analyses (White et al., 2009). A 95% confidence cutoff was applied to

identifications. Distribution models and 95% fold change confidence intervals

for each fraction and protein set (i.e., 30S or 50S biogenesis) were individually

determined from respective 1:1 (w:w) WT:WT and mutant:mutant mixtures.

Relative differences between WT and mutant, exceeding the corresponding

95% fold change confidence interval, were considered significant (p value %

0.05; see the Supplemental Experimental Procedures for details).

Hypergeometric analyses with Benjamini-Hochberg multiple testing correc-

tion were used to test for GI enrichment and underrepresentation in static and

differential networks after filtering GI data for significance (p values % 0.05

and % 0.01, respectively) (see the Supplemental Experimental Procedures

for details). Long-term evolutionary conservation of each E. coli gene was ex-

pressed as counts of species with orthologs detected by InParanoid (Ostlund

et al., 2010). Pre-ranked Gene Set Enrichment Analysis (GSEA) was performed

using a desktop application (Subramanian et al., 2005).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and six tables and can be found with this article online at http://
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Nord, S., Bylund, G.O., Lövgren, J.M., and Wikström, P.M. (2009). The RimP

protein is important for maturation of the 30S ribosomal subunit. J. Mol. Biol.

386, 742–753.
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