1,066 research outputs found

    Non-Gaussianity of scalar perturbations generated by conformal mechanisms

    Full text link
    We consider theories which explain the flatness of the power spectrum of scalar perturbations in the Universe by conformal invariance, such as conformal rolling model and Galilean Genesis. We show that to the leading {\it non-linear} order, perturbations in all models from this class behave in one and the same way, at least if the energy density of the relevant fields is small compared to the total energy density (spectator approximation). We then turn to the intrinsic non-Gaussianities in these models (as opposed to non-Gaussianities that may be generated during subsequent evolution). The intrinsic bispectrum vanishes, so we perform the complete calculation of the trispectrum and compare it with the trispecta of local forms in various limits. The most peculiar feature of our trispectrum is a (fairly mild) singularity in the limit where two momenta are equal in absolute value and opposite in direction (folded limit). Generically, the intrinsic non-Gaussianity can be of detectable size.Comment: 28 pages, 5 figures. Journal version. A comment on the size of the non-Gaussianities inserted. Misprints corrected. A reference adde

    Cosmological Inflation and the Quantum Measurement Problem

    Full text link
    According to cosmological inflation, the inhomogeneities in our universe are of quantum mechanical origin. This scenario is phenomenologically very appealing as it solves the puzzles of the standard hot big bang model and naturally explains why the spectrum of cosmological perturbations is almost scale invariant. It is also an ideal playground to discuss deep questions among which is the quantum measurement problem in a cosmological context. Although the large squeezing of the quantum state of the perturbations and the phenomenon of decoherence explain many aspects of the quantum to classical transition, it remains to understand how a specific outcome can be produced in the early universe, in the absence of any observer. The Continuous Spontaneous Localization (CSL) approach to quantum mechanics attempts to solve the quantum measurement question in a general context. In this framework, the wavefunction collapse is caused by adding new non linear and stochastic terms to the Schroedinger equation. In this paper, we apply this theory to inflation, which amounts to solving the CSL parametric oscillator case. We choose the wavefunction collapse to occur on an eigenstate of the Mukhanov-Sasaki variable and discuss the corresponding modified Schroedinger equation. Then, we compute the power spectrum of the perturbations and show that it acquires a universal shape with two branches, one which remains scale invariant and one with nS=4, a spectral index in obvious contradiction with the Cosmic Microwave Background (CMB) anisotropy observations. The requirement that the non-scale invariant part be outside the observational window puts stringent constraints on the parameter controlling the deviations from ordinary quantum mechanics... (Abridged).Comment: References added, minor corrections, conclusions unchange

    Enhancing the tensor-to-scalar ratio in simple inflation

    Full text link
    We show that in theories with a nontrivial kinetic term the contribution of the gravitational waves to the CMB fluctuations can be substantially larger than that is naively expected in simple inflationary models. This increase of the tensor-to-scalar perturbation ratio leads to a larger B-component of the CMB polarization, thus making the prospects for future detection much more promising. The other important consequence of the considered model is a higher energy scale of inflation and hence higher reheating temperature compared to a simple inflation.Comment: 9 pages, 1 figure and references are added, discussion is slightly extended, published versio

    Observable non-gaussianity from gauge field production in slow roll inflation, and a challenging connection with magnetogenesis

    Full text link
    In any realistic particle physics model of inflation, the inflaton can be expected to couple to other fields. We consider a model with a dilaton-like coupling between a U(1) gauge field and a scalar inflaton. We show that this coupling can result in observable non-gaussianity, even in the conventional regime where inflation is supported by a single scalar slowly rolling on a smooth potential: the time dependent inflaton condensate leads to amplification of the large-scale gauge field fluctuations, which can feed-back into the scalar/tensor cosmological perturbations. In the squeezed limit, the resulting bispectrum is close to the local one, but it shows a sizable and characteristic quadrupolar dependence on the angle between the shorter and the larger modes in the correlation. Observable non-gaussianity is obtained in a regime where perturbation theory is under control. If the gauge field is identified with the electromagnetic field, the model that we study is a realization of the magnetogenesis idea originally proposed by Ratra, and widely studied. This identification (which is not necessary for the non-gaussianity production) is however problematic in light of a strong coupling problem already noted in the literature.Comment: 28 pages, no figures. Final versio

    Testing Multi-Field Inflation: A Geometric Approach

    Get PDF
    We develop an approach for linking the power spectra, bispectrum, and trispectrum to the geometric and kinematical features of multifield inflationary Lagrangians. Our geometric approach can also be useful in determining when a complicated multifield model can be well approximated by a model with one, two, or a handful of fields. To arrive at these results, we focus on the mode interactions in the kinematical basis, starting with the case of no sourcing and showing that there is a series of mode conservation laws analogous to the conservation law for the adiabatic mode in single-field inflation. We then treat the special case of a quadratic potential with canonical kinetic terms, showing that it produces a series of mode sourcing relations identical in form to that for the adiabatic mode. We build on this result to show that the mode sourcing relations for general multifield inflation are extension of this special case but contain higher-order covariant derivatives of the potential and corrections from the field metric. In parallel, we show how these interactions depend on the geometry of the inflationary Lagrangian and on the kinematics of the associated field trajectory. Finally, we consider how the mode interactions and effective number of fields active during inflation are reflected in the spectra and introduce a multifield consistency relation, as well as a multifield observable that can potentially distinguish two-field scenarios from scenarios involving three or more effective fields.Comment: 21 pages, 4 figures + tables. Revised to clarify several points and reorganized Section III for pedagogical reasons. Error in one equation and typos were corrected, as well as additional references adde

    Testing Two-Field Inflation

    Full text link
    We derive semi-analytic formulae for the power spectra of two-field inflation assuming an arbitrary potential and non-canonical kinetic terms, and we use them both to build phenomenological intuition and to constrain classes of two-field models using WMAP data. Using covariant formalism, we first develop a framework for understanding the background field kinematics and introduce a "slow-turn" approximation. Next, we find covariant expressions for the evolution of the adiabatic/curvature and entropy/isocurvature modes, and we discuss how the mode evolution can be inferred directly from the background kinematics and the geometry of the field manifold. From these expressions, we derive semi-analytic formulae for the curvature, isocurvature, and cross spectra, and the spectral observables, all to second-order in the slow-roll and slow-turn approximations. In tandem, we show how our covariant formalism provides useful intuition into how the characteristics of the inflationary Lagrangian translate into distinct features in the power spectra. In particular, we find that key features of the power spectra can be directly read off of the nature of the roll path, the curve the field vector rolls along with respect to the field manifold. For example, models whose roll path makes a sharp turn 60 e-folds before inflation ends tend to be ruled out because they produce strong departures from scale invariance. Finally, we apply our formalism to confront four classes of two-field models with WMAP data, including doubly quadratic and quartic potentials and non-standard kinetic terms, showing how whether a model is ruled out depends not only on certain features of the inflationary Lagrangian, but also on the initial conditions. Ultimately, models must possess the right balance of kinematical and dynamical behaviors, which we capture in a set of functions that can be reconstructed from spectral observables.Comment: Revised to match accepted PRD version: Improved discussion of background kinematics and multi-field effects, added tables summarizing key quantities and their links to observables, more detailed figures, fixed typos in former equations (103) and (117). 49 PRD pages, 11 figure

    A Radiation Bounce from the Lee-Wick Construction?

    Full text link
    It was recently realized that matter modeled by the scalar field sector of the Lee-Wick Standard Model yields, in the context of a homogeneous and isotropic cosmological background, a bouncing cosmology. However, bouncing cosmologies induced by pressure-less matter are in general unstable to the addition of relativistic matter (i.e. radiation). Here we study the possibility of obtaining a bouncing cosmology if we add not only radiation, but also its Lee-Wick partner, to the matter sector. We find that, in general, no bounce occurs. The only way to obtain a bounce is to choose initial conditions with very special phases of the radiation field and its Lee-Wick partner.Comment: 11 page

    Pitfalls of a power-law parametrization of the primordial power spectrum for primordial black hole formation

    Get PDF
    Primordial Black Holes (PBHs) can form in the radiation dominated early Universe from the collapse of large density perturbations produced by inflation. A power-law parameterisation of the primordial power spectrum is often used to extrapolate from cosmological scales, where the amplitude of the perturbations is well-measured by Cosmic Microwave Background and Large Scale Structure observations, down to the small scales on which PBHs may form. We show that this typically leads to large errors in the amplitude of the fluctuations on small scales, and hence extremely inaccurate calculations of the abundance of PBHs formed

    Translational Invariance and the Anisotropy of the Cosmic Microwave Background

    Get PDF
    Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes of the spherical-harmonic coefficients.Comment: Notation improve

    Path Integral for Inflationary Perturbations

    Full text link
    The quantum theory of cosmological perturbations in single field inflation is formulated in terms of a path integral. Starting from a canonical formulation, we show how the free propagators can be obtained from the well known gauge-invariant quadratic action for scalar and tensor perturbations, and determine the interactions to arbitrary order. This approach does not require the explicit solution of the energy and momentum constraints, a novel feature which simplifies the determination of the interaction vertices. The constraints and the necessary imposition of gauge conditions is reflected in the appearance of various commuting and anti-commuting auxiliary fields in the action. These auxiliary fields are not propagating physical degrees of freedom but need to be included in internal lines and loops in a diagrammatic expansion. To illustrate the formalism we discuss the tree-level 3-point and 4-point functions of the inflaton perturbations, reproducing the results already obtained by the methods used in the current literature. Loop calculations are left for future work.Comment: (v1) 28 pages, no figures; (v2) 29 pages, minor changes, matches published versio
    • …
    corecore