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Primordial Black Holes (PBHs) can form in the radiation dominated early Universe from the
collapse of large density perturbations produced by inflation. A power-law parameterisation of the
primordial power spectrum is often used to extrapolate from cosmological scales, where the am-
plitude of the perturbations is well-measured by Cosmic Microwave Background and Large Scale
Structure observations, down to the small scales on which PBHs may form. We show that this typ-
ically leads to large errors in the amplitude of the fluctuations on small scales, and hence extremely
inaccurate calculations of the abundance of PBHs formed.

I. INTRODUCTION

The recent discovery of gravitational waves from ∼
10M� binary BH mergers has led to a resurgence of in-
terest in Primordial (i.e. formed in the early Universe)
Black Holes (PBHs) [1, 2]. The abundance of plane-
tary to multi-Solar mass PBHs is tightly constrained by
microlensing [3–6], dynamical [7–9] and accretion [10–
12] constraints. However there is a mass window at
(10−14 − 10−10)M� where PBHs could make up all of
the dark matter1 [2]. PBHs can form from the collapse
of large density perturbations [17, 18] and avoiding PBH
over-production constrains the primordial power spec-
trum on small scales, and hence models of inflation [19].
For a recent review of PBH formation and abundance
constraints see Ref. [20].

A non-negligible number of PBHs will only be formed
from the collapse of density perturbations if their ampli-
tude on small scales is several orders of magnitude larger
than the measured amplitude on cosmological scales (e.g.
Refs. [19, 21, 22]). There are several ways in which this
can be achieved. The amplitude of the fluctuations can
grow smoothly with decreasing (physical) scale. This
can occur, for instance, in the running mass inflation
model [23–25] and also a sub-set of the models produced
by the flow formalism [26, 27] (see Sec. III B). Another
possibility is a spike or broad peak in the power spec-
trum, which can be produced by a feature in the inflaton
potential [28, 29] or in multi-field models (see Ref. [20]).

It is common (c.f. Ref. [30, 31]) to parameterise the
power spectrum of the primordial curvature fluctuations,
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1 Constraints have been published in this region from microlens-

ing [13] and the destruction of neutron stars [14]. However it
has been pointed out that the standard microlensing analysis is
not valid below 10−10 M�, since the wavelength of the light is
larger than the PBH Schwarzschild radius and diffraction reduces
the maximum magnification [15]. The neutron star constraints
meanwhile assume an unrealistically high dark matter density in
globular clusters [16].
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i.e. the spectral index, ns(k), is Taylor expanded around
k0. For Planck the pivot wave-number, k0, was taken to
be 0.05 Mpc−1 [31, 32] as this is roughly in the middle of
the logarithmic range of scales probed [32] 2.

It is possible for inflation to produce a pure power-
law power spectrum, with αs, βs and all higher order
terms in the expansion of ns(k) identically equal to zero.
However this only occurs for very specific forms of the
inflaton potential [34–36]. If the primordial perturba-
tions are produced by slow-roll inflation then generically
(ns − 1) ∼ O(ε) , αs ∼ O(ε2), βs ∼ O(ε3) and so on,
where ε < 1 (e.g. Ref. [37]). In this case the Taylor
expansion of the spectral index is valid for cosmologi-
cal observations, which probe a limited range of scales,
k ∼ (10−4 − 1) Mpc−1. However this expansion has also
been used when studying PBH formation (e.g. Refs. [38–
40]), which occurs over a large range of much smaller
length scales. The lightest PBHs which do not evapo-
rate by the present day have MPBH ≈ 5 × 1014 g [41],

2 From the perspective of accurately constraining the primordial
power spectrum, the optimal choice of pivot scale is that corre-
sponding to the multipole where the observational errors on the
temperature power spectrum are smallest [33].
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which corresponds to a scale k ∼ 2 × 1016 Mpc−1,
i.e. ln(k/k0) ∼ 41, while MPBH ≈ 10M� PBHs corre-
spond to k ∼ 106 Mpc−1, i.e. ln(k/k0) ∼ 17 (see Sec. II
for details). So for PBH formation ε ln (k/k0) is not small,
and therefore the power-law expansion in Eqs. (1-2) is not
expected to converge, even for slow-roll inflation models.
If PBHs are formed from a spike or peak in the power
spectrum on small scales, then a power-law extrapolation
of the power spectrum from cosmological scales is clearly
not appropriate.

In this paper we investigate the errors induced by us-
ing a power-law parameterisation of the power spectrum
when studying PBH formation. In Sec. II we review the
formation of PBHs from large density perturbations dur-
ing radiation domination. In Sec. III we study two cases,
a Taylor expansion of the power spectrum truncated at
different orders (Sec. III A) and inflation models gener-
ated using the flow formalism (Sec. III B). We conclude
with discussion in Sec. IV.

II. BACKGROUND

In this section we outline how the abundance of PBHs
depends on the amplitude of the primordial power spec-
trum. Since our goal is not to carry out concrete cal-
culations of the PBH abundance we do not consider,
for instance, the dependence of the PBH mass on the
amplitude of the density fluctuation due to critical col-
lapse [42], non-gaussianity of the primordial perturba-
tions [43] or the uncertainties induced by the choice of
window function [44]. For a detailed calculation see e.g.
Refs. [20, 22]

During radiation domination a fluctuation on a physi-
cal scale R will collapse to form a PBH, with mass MPBH

roughly equal to the horizon mass, MH, if the smoothed
density contrast at horizon entry, δ(R), exceeds a thresh-
old value δc which is of order unity [17, 45]. Assuming the
initial perturbations have a Gaussian distribution then
the initial PBH mass fraction, β(MPBH) = ρPBH/ρtot, is
given by [18]3

β(MPBH) ≈ 2√
2πσ(R)

∫ ∞
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where σ(R) is the mass variance evaluated when the scale
of interest enters the horizon, erfc(x) is the complemen-
tary error function, and the last step uses its large x

3 We follow the usual Press-Schecter procedure of multiplying the
integral of the probability distribution by a factor of 2, so that
all of the mass in the Universe is accounted for.

approximation. The mass variance is given by [20]

σ2(R) =
16

81

∫ ∞
0

W 2(kR)(kR)4PR(k) d ln k , (6)

where PR(k) is the power spectrum of the primordial
curvature perturbation on comoving slicing and W (kR)
is the Fourier transform of the window function used to
smooth the density contrast. For a primordial power
spectrum which varies slowly with scale σ2(R) is pro-
portional to PR(1/R) [21, 22].

The observational constraints on the initial abundance
of PBHs, β(MPBH), [2, 20] are scale dependent. How-
ever the PBH abundance depends exponentially on the
mass variance, c.f. Eq. (5). Therefore the scale depen-
dence of the resulting constraints on the amplitude of
the primordial perturbations is relatively weak and the
constraints can be roughly approximated as PR(k) .
10−2 [21, 22, 44].

The horizon mass, MH, when a comoving scale k reen-
ters the horizon is given, using the Friedman equation
and assuming radiation domination at early times (see
Ref. [28, 29] for details), by

MH = 5× 1014 g
( g?

106.75

)1/6( k

2× 1016 Mpc−1

)−2
.

(7)
The effective number of degrees of freedom, g?, has been
assumed to be equal for entropy and energy density and
normalized to its value at high temperatures in the Stan-
dard Model. Here we have normalised the horizon mass
to the lightest PBHs which do not evaporate by the
present day, MPBH ≈ 5× 1014 g [41].

III. RESULTS

A. Taylor expansion of ns(k)

We first examine how retaining a varying number of
terms in the Taylor expansion of ns(k), Eq. (2), affects
the amplitude of the power spectrum on small scales. For
concreteness we focus on a scale kref = 2 × 1016 Mpc−1

which corresponds, roughly, to the lightest PBHs which
do not evaporate by the present day. For larger (smaller)
k, corresponding to lighter (heavier) PBHs, the devia-
tions in the power spectrum will be larger (smaller).

The constraints on the parameters of the power-law pa-
rameterisation of the power spectrum, Eq. (1), including
terms up to d2ns/d(ln k)2, from Planck 2015 using the
TT, TE, EE+lowP data sets [31] are (with 1σ errors):

ln (1010As) = 3.094± 0.0034 , (8)

ns|k0 = 0.9586± 0.0056 , (9)(
dns

d ln k

)∣∣∣∣
k0

= 0.009± 0.010 , (10)(
d2ns

d(ln k)2

)∣∣∣∣
k0

= 0.025± 0.013 . (11)
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FIG. 1. Three examples of the primordial power spectrum
of the curvature perturbation, PR(k), calculated using a Tay-
lor expansion of the scalar spectral index, ns(k), retaining
varying numbers of terms in the expansion. The black solid
lines are for the 3rd order expansion including terms up to the
running of the running. The red long-dashed and green short-
dashed lines truncate the expansion at 2nd order (including
the tilt and running) and 1st order (tilt only) respectively.
The tilt, running, and running of the running at the pivot
scale, k0 = 0.05 Mpc−1, have been chosen so that when the
3rd order expansion is used the perturbations on small scales
are sufficiently large to form an interesting number of PBHs,
specifically PR(kref = 2×1016 Mpc−1) ≈ 10−2, while also sat-
isfying the constraints from Planck on large scales (see text
for further details). The upper panel shows the full range
of scales considered while the lower panel is restricted to the
scales constrained by Planck.

For compactness we subsequently refer to (ns|k0 − 1),
(dns/d ln k)|k0 and (d2ns/d(ln k)2)|k0 as the tilt, running
and running of the running respectively. We scan over
the range of 2σ allowed values of the tilt, running and
running of the running and calculate the power spectrum
to 1st order (i.e. using the tilt only and neglecting higher
order terms), 2nd order (using the tilt and running) and
3rd order (using the tilt, running and running of the run-
ning). We find combinations of the parameters for which
the 3rd order calculation gives PR(kref) ≈ 10−2 i.e. suffi-
ciently large to form an interesting abundance of PBHs.

The 1st, 2nd and 3rd order calculations of the power
spectrum are shown in Fig. 1 for three representative

sets of parameters, chosen to span the range of variation.
Since the tilt is small and negative the 1st order power
spectra decrease weakly with increasing k and are many
orders of magnitude smaller on small scales than the 3rd
order power spectra. The error on the tilt is small, so
there is very little spread in the 1st order power spectra.
When the running of the running is allowed to vary in
the fit to the CMB data, the allowed range of the running
is quite large and encompasses (at 2σ) both positive and
negative values. The variation in the 2nd order power
spectra is therefore very large. PR(kref) ≈ 10−2 can be
achieved with a positive running of the running and a
negative running. In this case the 2nd order power spec-
trum decreases significantly with increasing k while the
3rd order power spectrum increases significantly so that
they differ on small scales by many orders of magnitude.
PR(kref) ≈ 10−2 can also be achieved with a positive
running and very small running of the running. In this
case the 2nd and 3rd order calculations are in fairly good
agreement, however this requires fine-tuning of the run-
ning of the running.

It is worth noting that when only the tilt and running
are allowed to vary in the fit to the CMB data the errors
on the running are significantly smaller, (dns/d ln k)|k0 =
−0.0057 ± 0.0071 at 1σ [31]. In this case the maximum
allowed positive tilt and running (at 2σ) only produce
PR(kref) ∼ 10−6, several orders of magnitude smaller
than required to produce an interesting abundance of
PBHs.

We caution against over-interpreting these results, in
particular they do not demonstrate that PBH formation
is natural or generic. The power spectra can become
large on small scales because of the large errors on the
running and the running of the running when both are
allowed to vary. These large errors reflect the fact that
the running and running of the running are, to some ex-
tent, degenerate and the CMB observations do not probe
a wide enough range of k values to be sensitive to the
running of the running. What this analysis does demon-
strate is that using a power-law parameterisation of the
power spectrum when studying PBH formation is inap-
propriate. The amplitude of the power spectrum varies
by many orders of magnitude when the number of terms
retained in the Taylor expansion of ns(k) is changed.

B. Flow formalism

The Taylor expansion of ns(k) considered in Sec. III A
makes no assumptions about the physics underlying the
generation of the primordial perturbations. We saw that
the large uncertainties in the running and running of run-
ning, which arise because CMB observations probe a rel-
atively limited range of scales, lead to significant differ-
ences in the power spectrum calculated when the expan-
sion for ns(k) is truncated at different orders. However
if the primordial perturbations are generated by slow-
roll inflation then the running of the running is typically
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smaller than the running, which in turn is smaller than
the tilt [37]. Therefore in this section we use the flow
equations to examine how well a Taylor expansion of
ns(k) performs for a selection of inflation models where
the power spectrum varies smoothly with scale and be-
comes large enough on small scales to produce an inter-
esting density of PBHs.

The flow equations [46, 47] are expressed in terms of
the Hubble slow-roll parameters [48],

εH =
m2

Pl

4π

(
H ′(φ)

H(φ)

)2

, (12)

lλH =

(
m2

Pl

4π

)l
(H ′)l−1

H l

d(l+1)H

dφ(l+1)
l ≥ 1 , (13)

where mPl is the Planck mass and ′ denotes differenti-
ation with respect to the scalar field, φ, that drives in-
flation. The flow equations describe the variation of the
slow-roll parameters in terms of the number of e-foldings
from the end of inflation, N = ln [a(tend)/a(t)]:

dεH
dN

= εH(σH + 2εH) , (14)

dσH
dN

= −5εHσH − 12ε2H + 2(2λH) , (15)

d(lλH)

dN
=

[
l − 1

2
σH + (l − 2)εH

]
(lλH) +l+1 λH ,(16)

l ≥ 1

where σH = 2(1λH) − 4εH . Derivatives with respect to
N are related to derivatives with respect to φ by

d

dN
=
mPl

2
√
π

√
εH

d

dN
, (17)

while

d ln k

dN
= −(1− εH) . (18)

Kinney introduced the idea of using the flow equations
to stochastically generate inflation models [47]. He ran-
domly chose ‘initial’ values for the slow roll parameters
and Ncos, the number of e-foldings between cosmological
scales exiting the horizon and the end of inflation, in the
ranges:

Ncos = [40, 70],

εH,0 = [0, 0.8] ,

σH,0 = [−0.5, 0.5] ,
2λH,0 = [−0.05, 0.05] ,
3λH,0 = [−0.005, 0.005] ,

...
M+1λH,0 = 0 , (19)

truncating the hierarchy at M = 5, and used the flow
equations to evolve the models forwards in time, un-
til either inflation ended or a late-time fixed point was

reached. The majority of the models generated by this
procedure have a late time attractor with εH = 0 where
inflation is eternal and the amplitude of the perturba-
tions becomes large. However this attractor is not always
reached within Ncos e-foldings. We will follow Peiris and
Easther [26] and assume that an auxiliary mechanism
(for instance a second scalar field) terminates inflation
once the specified number of e-folding has occurred. Lid-
dle [49] pointed out that the flow equations effectively
assume that the Hubble parameter is a polynomial func-
tion of the scalar field, H(φ), with the co-efficient of the
φm term in H(φ) being determined by (m−1λH,0) and
εH,0 [50]. Therefore only φ(N) (and in our case also
k(N)) needs to be evolved numerically.

We use the same range of initial values for the slow-
roll parameters as Ref. [47], given in Eq. (19) above. For
concreteness we fix Ncos = 42 so that the scale that exits
the horizon at the end of inflation is, roughly (the re-
lationship between k and N , Eq. (18), depends on εH),
kref ≈ 2 × 1016 Mpc−1. We assume that Ncos = 42 cor-
responds to the Planck pivot scale k0 = 0.05 Mpc−1. We
evolve each model forward in time (dN < 0) from N = 42
to N = 0 and also backwards to k = 2 × 10−3 Mpc−1,
the largest scale on which the primordial power spectrum
is well constrained by Planck. No significant changes to
our results occur if instead we take N = 0 to correspond
to the smallest k value probed by Planck instead of the
pivot scale k0.

For each model we calculate the primordial power spec-
trum of the curvature perturbation as a function of scale
using the Stewart-Lyth (SL) formula [51]:

PSL
R (k) =

[
1− (2C + 1)εH + C(1λH)

]2
πεH

(
H

mPl

)2
∣∣∣∣∣
k=aH

.

(20)
where C = −2 + ln 2 + γ ≈ −0.729 with γ the Euler-
Mascheroni constant. This formula is derived via a slow-
roll expansion around the exact solution for power-law
inflation (where the scale factor varies with time as a ∝ tp
with p > 1 and the slow roll parameters are constant). A
full numerical evaluation of the Mukhanov-Sasaki equa-
tion [52, 53] finds that scales that exit the horizon very
close to the end of inflation [27, 54] are amplified rela-
tive to the SL formula. However this difference is small
compared to the difference between the SL formula and
power-law extrapolations of the power spectrum and the
SL formula otherwise accurately matches the results of
a full numerical calculation for the models generated by
the flow formalism [27].

We select models for which

• PSLR (k) on large scales (2 × 10−3 Mpc−1 < k <

3 Mpc−1) lies within the 2σ Bayesian reconstruc-
tions of the primordial power spectrum from the
Planck 2015 data (Fig. 26 of Ref. [31]) and the
Lyman-α forest (Fig. 7 of Ref. [55]),
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FIG. 2. Four examples of the primordial power spectrum of
the curvature perturbation, PR(k), generated using the flow
formalism. The ‘initial’ values of the Hubble slow roll param-
eters have been chosen to give PR(k = 1016 Mpc−1) ≈ 10−2

while satisfying the constraints from Planck and the Lyman-α
forest on large scales (see text for further details). The black
solid lines are calculated using the Stewart-Lyth expression,
Eq. (20), while the red long-dashed and green short-dashed
lines are from Taylor expansions of the spectral index at 2nd
and 1st order respectively, with the spectral index and its
running calculated using the initial values of the slow roll
parameters. The upper panel shows the full range of scales
considered while the lower panel is restricted to the scales
constrained by the CMB and Large Scale Structure (LSS).
The blue and purple shaded regions in the lower panel show
the 2σ Bayesian reconstruction of the primordial power spec-
trum from Planck 2015 (Fig. 26 of Ref. [31]) and the Lyman-α
forest (Fig. 7 of Ref. [55]) respectively.

• the tensor-to-scalar ratio (e.g. Ref. [56])

r = 16εH + 32C(εH)2 − 32CεH(1λH) , (21)

calculated using the initial values of the slow roll
parameters satisfies r0 < 0.1 [31],

• the primordial power spectrum on small scales in
large enough to produce an interesting abundance
of PBHs: PR(kref) ≈ 10−2.

In these cases we compare the Stewart-Lyth calculation
of the power spectrum with the 1st and 2nd order Tay-
lor expansions of ns(k). The spectral index and running
at the pivot scale are calculated using the initial values
of the slow roll parameters and the 2nd order slow roll
expressions, e.g. Ref. [56],:

ns = 1− 4εH + 2(1λH)− 2C(2λH)− (8C + 1)(εH)2

+ (6 + 10C)εH(1λH) , (22)

dns
dlnk

= −8(εH)2 + 10εH(1λH)− 2(2λH)

− (8 + 14C)εH(2λH) + 2C(1λH)(2λH)

+ 2C(3λH) . (23)

The power spectra for four example models are dis-
played in Fig. 2. Three of these models have been chosen
to span the range of deviations between the power spec-
trum calculated using the 2nd order expansion of ns(k)
and the SL calculation. As in Sec. III A we see that the
1st order power spectra decrease weakly with increasing
k and are many orders of magnitude smaller on small
scales than the SL power spectra, and far too small to
form a significant abundance of PBHs. In this case the
2nd order power spectra can be many orders of magni-
tude smaller or larger than the SL calculation, or very
similar to it. Typically the deviation is non-negligible.

The case where there is agreement between the 2nd
order and SL calculation at kref is in fact accidental.
As discussed earlier, the models where the power spec-
trum grows with decreasing k have εH decreasing with
increasing k so that the power-spectrum tends to a pure
power-law. However the initial value of the running is not
negligible so the 2nd order power spectrum isn’t a pure
power-law. Therefore if the power spectra were continued
to smaller k the 2nd order power spectra would deviate
from the SL calculation. Deviations of many orders of
magnitude between the 2nd order power spectra and the
SL calculation are typical. It is not possible to make
a concrete, quantitative statement about the size of the
deviation between the 2nd order power spectra and the
SL calculation. If we had generated a larger selection of
models they would have included models with larger devi-
ations, but this would essentially be due to fine-tuning of
the initial slow roll parameters. Furthermore, as pointed
out in Refs. [49, 57], the flow formalism does not generate
an unbiased selection of inflation models.

The majority of models which have large fluctuations
on small scales, while satisfying the CMB and LSS con-
straints, have power spectra on large scales which are
non-monotonic. By fine-tuning the initial slow roll pa-
rameters, so that εH,0, σH,0 and (2λH,0) are all small,
it is possible to produce monotonic behaviour on large
scales and still have large fluctuations on small scales.
An example of this is also plotted in Fig. 2. In this case
the tilt and running at the pivot scale are both small and
hence the 2nd order power spectrum behaves in a similar
way to the 1st order power spectrum, and is many or-
ders of magnitude smaller than the SL power spectrum
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on small scales.
We again caution against interpreting these results as

demonstrating that PBH formation is natural or generic.
In addition to the limitations of the flow formalism men-
tioned above, fine-tuning of the initial slow roll param-
eters is required to produce a power-spectrum on small
scales which is large enough to produce an interesting
number of PBHs while satisfying the CMB and Lyman-α
forest constraints on large scales. Furthermore, since the
models which produce large fluctuations on small scales
have εH → 0 at late times, following Ref. [26] we have
assumed that an unspecified auxiliary mechanism termi-
nates inflation.

IV. DISCUSSION

We have studied the accuracy of a power-law param-
eterisation of the primordial power spectrum of the cur-
vature perturbation, Eq. (1), when studying Primordial
Black Hole formation. We first examined how the am-
plitude on small scales varies when the Taylor expansion
of the spectral index, ns(k), is truncated at different or-
ders, using values for the co-efficients of the expansion
consistent with the measurements of the tilt, running and
running of the running on large scales from the Planck
measurements of the anisotropies in the CMB [31]. We
found the amplitude typically changes by many orders
of magnitude when going from 1st order (only including
the tilt) to 2nd order (adding in the running) and also
when going from 2nd order to 3rd order (adding in the
running of the running). This illustrates that a power-
law expansion is not valid when extrapolating over the
many orders of magnitude between the scales probed by
the CMB and those on which PBHs may form.

Since the CMB probes a relatively small range of scales
the errors in the running of the running from Planck are
large, and values larger than typically expected from slow
roll inflation are allowed. We therefore then used the
flow formalism [47] to generate a large ensemble of infla-
tion models, including some where the power spectrum
is consistent with the CMB and LSS measurements on
large scales and grows sufficiently with increasing k to
form PBHs on small scales. In these cases we compared
the 1st and 2nd order power-law parameterisations of the
power spectrum with the calculation using the Stewart-
Lyth expression [51]. Again we found that the power-law
expansion led to amplitudes which were typically incor-
rect by many orders of magnitude, and could be larger or
smaller than the SL value. Since the abundance of PBHs
formed depends exponentially on the amplitude of the

fluctuations, Eq. (5), these large errors in the amplitude
of the fluctuations lead to huge errors in the abundance
of PBHs. We do not quote a value for the size of the
error, since it depends significantly on the initial values
of the slow roll parameters. For concreteness we focussed
on a wavenumber kref = 2 × 1016 Mpc−1, corresponding
to the smallest mass PBHs which do not evaporate by
the present day, MPBH ≈ 5 × 1014 g [41]. However, as
can be seen in Fig. 2, the deviations are still large even
for smaller k, or equivalently heavier PBHs.

It has been pointed out that the flow formalism does
not probe the full range of possible inflation models; it ef-
fectively assumes a particular form for the potential [49]
and only samples restricted sections of the potential [57].
Nonetheless these models, where the potential/Hubble
parameter does not have a feature at a particular scale
and the power spectrum varies gradually, are a best case
scenario for a power-law parameterisation of the power
spectrum. In models where PBHs are produced from
a spike or peak in the power spectrum at a particular
scale (for instance from a local minimum in the poten-
tial [28, 29] or multiple fields, see Ref. [20]) a power-law
extrapolation from cosmological scales is clearly inappro-
priate.

Our conclusion is that a power-law extrapolation of
the primordial power spectrum from cosmological scales
down to the small scales on which PBHs may form is
invalid. It produces extremely inaccurate values for the
amplitude of fluctuations on small scales, and hence the
abundance of PBHs formed. As discussed in Sec. III B
these results should not be interpreted as showing that
PBHs can be naturally formed in single-field inflation
models. Finding flow models where the power spectrum
on small scales is large enough to produce an interesting
number of PBHs, while satisfying the observational con-
straints on large scales, requires fine-tuning of the initial
slow roll parameters. Furthermore, since the approach
we have followed [26] assumes that a auxiliary mecha-
nism terminates inflation, these are not strictly speaking
single field models.
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