271 research outputs found

    Study of Wear of Pitched Blade Impellers in a Solid-Liquid Suspension

    Get PDF
    A study was made of the erosion wear of the blades of pitched blade impellers in a suspension of silicious sand (CV= 5 %, d=0.325 mm, degree of hardness "7.5") in water under a turbulent flow regime of agitated charge when complete homogeneity of the suspension was achieved. Two aims of the study were defined: the dependence of the rate of the erosion process of the impeller blades on impeller frequency of revolution and on the size of the mixing equipment. Experiments were carried out on pilot plant mixing equipment of two sizes (geometrically similar) made of stainless steel (diameters of cylindrical vessels T1 = 200 mm and T2 = 300 mm, diameters of impellers D1 = 100 mm and D2= 66. 7 mm, impeller off bottom clearances h1 = 100 mm and h2= 66. 7 mm, respectively) equipped with four radial baffles (width b1 = 30 mm, b2 =20 mm, respectively) and an impeller with four inclined plane blades (pitch angle α =30°, 45°, relative blade with W/D = 0.2) made of rolled brass (Brinnel hardness 40-50 BM) always pumping the liquid downwards towards the float vessel bottom. The wear of the impeller was described by an analytical approximation in exponential form with two parameters (the wear rate constant k and the geometrical parameters of the worn blade C) calculated by the least squares method from the experimentally found profile of the worn leading edge of the impeller blades. While the wear rate constant exhibits a monotonous dependence on the pitch angle only, the geometric parameter is dependent both on the pitch angle and in linear form on the impeller tip speed. Thus in the procedure for scaling up the rate of erosion wear of the pitched blade impellers in a suspension of higher solid particle hardness, the decision process parameters are the impeller blade pitch angle and the impeller tip speed

    Flood loss models and risk analysis for private households in can Tho City, Vietnam

    Get PDF
    Vietnam has a long history and experience with ïŹ‚oods. Flood risk is expected to increase further due to climatic, land use and other global changes. Can Tho City, the cultural and economic center of the Mekong delta in Vietnam, is at high risk of ïŹ‚ooding. To improve ïŹ‚ood risk analyses for Vietnam, this study presents novel multi-variable ïŹ‚ood loss models for residential buildings and contents and demonstrates their application in a ïŹ‚ood risk assessment for the inner city of Can Tho. Cross-validation reveals that decision tree based loss models using the three input variables water depth, ïŹ‚ood duration and ïŹ‚oor space of building are more appropriate for estimating building and contents loss in comparison with depth-damage functions. The ïŹ‚ood risk assessment reveals a median expected annual ïŹ‚ood damage to private households of US$3340 thousand for the inner city of Can Tho. This is approximately 2.5%of the total annual income of households in the study area. For damage reduction improved ïŹ‚ood risk management is required for the Mekong Delta, based on reliable damage and risk analyses

    Active translocon complexes labeled with GFP–Dad1 diffuse slowly as large polysome arrays in the endoplasmic reticulum

    Get PDF
    In the ER, the translocon complex (TC) functions in the translocation and cotranslational modification of proteins made on membrane-bound ribosomes. The oligosaccharyltransferase (OST) complex is associated with the TC, and performs the cotranslational N-glycosylation of nascent polypeptide chains. Here we use a GFP-tagged subunit of the OST complex (GFP–Dad1) that rescues the temperature-sensitive (ts) phenotype of tsBN7 cells, where Dad1 is degraded and N-glycosylation is inhibited, to study the lateral mobility of the TC by FRAP. GFP–Dad1 that is functionally incorporated into TCs diffuses extremely slow, exhibiting an effective diffusion constant (Deff) about seven times lower than that of GFP-tagged ER membrane proteins unhindered in their lateral mobility. Termination of protein synthesis significantly increases the lateral mobility of GFP–Dad1 in the ER membranes, but to a level that is still lower than that of free GFP–Dad1. This suggests that GFP–Dad1 as part of the OST remains associated with inactive TCs. Our findings that TCs assembled into membrane-bound polysomes diffuse slowly within the ER have mechanistic implications for the segregation of the ER into smooth and rough domains

    Multi-variate analyses of flood loss in Can Tho city, Mekong delta

    Get PDF
    Floods in the Mekong delta are recurring events and cause substantial losses to the economy. Sea level rise and increasing precipitation during the wet season result in more frequent floods. For effective flood risk management, reliable losses and risk analyses are necessary. However, knowledge about damaging processes and robust assessments of flood losses in the Mekong delta are scarce. In order to fill this gap, we identify and quantify the effects of the most important variables determining flood losses in Can Tho city through multi-variate statistical analyses. Our analysis is limited to the losses of residential buildings and contents. Results reveal that under the specific flooding characteristics in the Mekong delta with relatively well-adapted households, long inundation durations and shallow water depths, inundation duration is more important than water depth for the resulting loss. However, also building and content values, floor space of buildings and building quality are important loss-determining variables. Human activities like undertaking precautionary measures also influence flood losses. The results are important for improving flood loss modelling and, consequently, flood risk assessments in the Mekong delta

    Impact‐based forecasting for pluvial floods

    Get PDF
    Pluvial floods in urban areas are caused by local, fast storm events with very high rainfall rates, which lead to inundation of streets and buildings before the storm water reaches a watercourse. An increase in frequency and intensity of heavy rainfall events and an ongoing urbanization may further increase the risk of pluvial flooding in many urban areas. Currently, warnings for pluvial floods are mostly limited to information on rainfall intensities and durations over larger areas, which is often not detailed enough to effectively protect people and goods. We present a proof-of-concept for an impact-based forecasting system for pluvial floods. Using a model chain consisting of a rainfall forecast, an inundation, a contaminant transport and a damage model, we are able to provide predictions for the expected rainfall, the inundated areas, spreading of potential contamination and the expected damage to residential buildings. We use a neural network-based inundation model, which significantly reduces the computation time of the model chain. To demonstrate the feasibility, we perform a hindcast of a recent pluvial flood event in an urban area in Germany. The required spatio-temporal accuracy of rainfall forecasts is still a major challenge, but our results show that reliable impact-based warnings can be forecasts are available up to 5 min before the peak of an extreme rainfall event. Based on our results, we discuss how the outputs of the impact-based forecast could be used to disseminate impact-based early warnings

    Interpolated wave functions for nonadiabatic simulations with the fixed-node quantum Monte Carlo method

    Full text link
    Simulating nonadiabatic effects with many-body wave function approaches is an open field with many challenges. Recent interest has been driven by new algorithmic developments and improved theoretical understanding of properties unique to electron-ion wave functions. Fixed-node diffusion Monte Caro is one technique that has shown promising results for simulating electron-ion systems. In particular, we focus on the CH molecule for which previous results suggested a relatively significant contribution to the energy from nonadiabatic effects. We propose a new wave function ansatz for diatomic systems which involves interpolating the determinant coefficients calculated from configuration interaction methods. We find this to be an improvement beyond previous wave function forms that have been considered. The calculated nonadiabatic contribution to the energy in the CH molecule is reduced compared to our previous results, but still remains the largest among the molecules under consideration.Comment: 7 pages, 3 figure

    Review article: assessing the costs of natural hazards - state of the art and knowledge gaps

    Get PDF
    Efficiently reducing natural hazard risks requires a thorough understanding of the costs of natural hazards. Current methods to assess these costs employ a variety of terminologies and approaches for different types of natural hazards and different impacted sectors. This may impede efforts to ascertain comprehensive and comparable cost figures. In order to strengthen the role of cost assessments in the development of integrated natural hazard management, a review of existing cost assessment approaches was undertaken. This review considers droughts, floods, coastal and Alpine hazards, and examines different cost types, namely direct tangible damages, losses due to business interruption, indirect damages, intangible effects, and the costs of risk mitigation. This paper provides an overview of the state-of-the-art cost assessment approaches and discusses key knowledge gaps. It shows that the application of cost assessments in practice is often incomplete and biased, as direct costs receive a relatively large amount of attention, while intangible and indirect effects are rarely considered. Furthermore, all parts of cost assessment entail considerable uncertainties due to insufficient or highly aggregated data sources, along with a lack of knowledge about the processes leading to damage and thus the appropriate models required. Recommendations are provided on how to reduce or handle these uncertainties by improving data sources and cost assessment methods. Further recommendations address how risk dynamics due to climate and socio-economic change can be better considered, how costs are distributed and risks transferred, and in what ways cost assessment can function as part of decision support

    How do changes along the risk chain affect flood risk?

    Get PDF
    Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge of how and to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes in climate, catchment, river system, land use, assets, and vulnerability. The application of this framework to the mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as a consequence of plausible change scenarios. It further reveals that components that have not received much attention, such as changes in dike systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although the specific results are conditional on the case study area and the selected assumptions, they emphasize the need for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes to a better understanding of how the different risk components influence the overall flood risk.</p

    Adaptation to flood risk: Results of international paired flood event studies

    Get PDF
    As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur
    • 

    corecore