1,164 research outputs found
Resolving Paradoxes of Robertsonian Translocations
Since Robertsonian translocations (ROB) are essential in the etiology of congenital malformations and reproductive disorders, it is natural to assume that they represent a thoroughly studied subject. However, on closer inspection, there are poorly studied areas within this field. The aim of this report is to present results of a comprehensive analysis of available data collected by researchers worldwide that allows a new look at the problems mentioned above. There were determined rates and spectrums of ROB in the general population and in patients with reproductive disorders. The comprehension of a female-based sex ratio (male-to-female ratio) among newborn carriers of balanced nonhomologous ROB in the general population leads to a conclusion on the mechanism of sex-specific correction of translocation trisomy, which might explain both inexplicably low occurrence of rob-associated uniparental disomy and phenomenon of “non-Mendelian-inheritance.” The data obtained indicate that female ROB carriers are at a much higher risk of uniparental disomy compared to male ROB carriers. In the majority of asymptomatic male carriers of homologous translocation/isochromosome (HT), spermatogenesis is not impaired. An analysis of sex ratio among ill-defined HT carriers showed a difference between patients with Prader-Willi syndrome and Angelman syndrome, indicating different mechanisms of HT formation
Temperature-induced reversal effects of kink dynamics in carbon nanotube on flat substrate
Carbon nanotubes are nano-objects with quite anisotropic properties, for
example the mechanical properties in longitudinal and radial directions differ
significantly. This feature of the carbon nanotubes yields many interesting
phenomena investigated in last decades. One of them is the ability to form both
hollow and collapsed states if the radius of the nanotube is large enough. The
transitions between the two states have been also reported. In our study we
present single-walled carbon nanotube interacting with a plane substrate and
characterize the energy of interaction with the substrate using effective
Lennard-Jones-type potential. We show energy of the homogeneous open and
collapsed states depending on the radius of the carbon nanotube and report on
the bi-stability in some range of the nanotube diameters. Using the
molecular-dynamical simulations we look at the evolution of the initial
half-opened, half-collapsed state and demonstrate that the transition area from
one state to another is spatially localized having features of topological
soliton (kink or anti-kink). We show that the value and the direction of the
kink propagation speed depend significantly on the nanotube diameter as well as
on the temperature of the system. We also discuss the mechanism of the process
using a simplified model with asymmetric double-well potential and show the
entropic nature of the transition.Comment: 9 pages, 8 figure
In-Plane Spectral Weight Shift of Charge Carriers in
The temperature dependent redistribution of the spectral weight of the
plane derived conduction band of the high
temperature superconductor (T_c = 92.7 K) was studied with wide-band (from 0.01
to 5.6 eV) spectroscopic ellipsometry. A superconductivity - induced transfer
of the spectral weight involving a high energy scale in excess of 1 eV was
observed. Correspondingly, the charge carrier spectral weight was shown to
decrease in the superconducting state. The ellipsometric data also provide
detailed information about the evolution of the optical self-energy in the
normal and superconducting states
Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral
In this paper we describe a route to produce crystalline Mg(OH)2 nanopowders from serpentinite ore distributed in the Halilovskiy array (Russia, Orenburg region). An efficient extraction route consisting of treatment on serpentinite in 40% HNO3 at 80 C followed by NH4OH titration for Mg(OH)2 precipitation was demonstrate
Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study
Magnetic materials are usually divided into two classes: those with localised
magnetic moments, and those with itinerant charge carriers. We present a
comprehensive experimental (spectroscopic ellipsomerty) and theoretical study
to demonstrate that these two types of magnetism do not only coexist but
complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material
the itinerant charge carriers interact with large localised magnetic moments of
Tb(4f) states, forming complex magnetic lattices at low temperatures, which we
associate with self-organisation of magnetic clusters. The formation of
magnetic clusters results in low-energy optical spectral weight shifts, which
correspond to opening of the pseudogap in the conduction band of the itinerant
charge carriers and development of the low- and high-spin intersite electronic
transitions. This phenomenon, driven by self-trapping of electrons by magnetic
fluctuations, could be common in correlated metals, including besides
Kondo-lattice metals, Fe-based and cuprate superconductors.Comment: 30 pages, 6 Figure
Characteristics of the immune response of scots pine during infection caused by Heterobasidion annsum s. s.
Heterobasidion annosum is a causative agent of the root and butt and appears to be one of the most economically important conifer pathogens, which causes devastation in boreal forest at northern hemisphere
Infrared studies of a La_(0.67)Ca_(0.33)MnO_3 single crystal: Optical magnetoconductivity in a half-metallic ferromagnet
The infrared reflectivity of a La_(0.67)Ca_(0.33)MnO_3 single crystal is studied over a broad range of temperatures (78–340 K), magnetic fields (0–16 T), and wave numbers (20–9000cm^(-1)). The optical conductivity gradually changes from a Drude-like behavior to a broad peak feature near 5000cm-1 in the ferromagnetic state below the Curie temperature T_C=307K. Various features of the optical conductivity bear striking resemblance to recent theoretical predictions based on the interplay between the double exchange interaction and the Jahn-Teller electron-phonon coupling. A large optical magnetoconductivity is observed near T_C
Infrared Studies of a La_{0.67}Ca_{0.33}MnO_3 Single Crystal: Optical Magnetoconductivity in a Half-Metallic Ferromagnet
The infrared reflectivity of a single crystal
is studied over a broad range of temperatures (78-340 K), magnetic fields (0-16
T), and wavenumbers (20-9000 cm). The optical conductivity gradually
changes from a Drude-like behavior to a broad peak feature near 5000 cm
in the ferromagnetic state below the Curie temperature . Various
features of the optical conductivity bear striking resemblance to recent
theoretical predictions based on the interplay between the double exchange
interaction and the Jahn-Teller electron-phonon coupling. A large optical
magnetoconductivity is observed near .Comment: 4 pages, 4 figures, Latex, PostScript; The 7th Joint MMM-Intermag
Conference,San Francisco, January 6-9, 1998; The Int. Conf. on Strongly
Correlated Electron Systems, Paris, July 15-18,199
- …