1,125 research outputs found

    Resolving Paradoxes of Robertsonian Translocations

    Get PDF
    Since Robertsonian translocations (ROB) are essential in the etiology of congenital malformations and reproductive disorders, it is natural to assume that they represent a thoroughly studied subject. However, on closer inspection, there are poorly studied areas within this field. The aim of this report is to present results of a comprehensive analysis of available data collected by researchers worldwide that allows a new look at the problems mentioned above. There were determined rates and spectrums of ROB in the general population and in patients with reproductive disorders. The comprehension of a female-based sex ratio (male-to-female ratio) among newborn carriers of balanced nonhomologous ROB in the general population leads to a conclusion on the mechanism of sex-specific correction of translocation trisomy, which might explain both inexplicably low occurrence of rob-associated uniparental disomy and phenomenon of “non-Mendelian-inheritance.” The data obtained indicate that female ROB carriers are at a much higher risk of uniparental disomy compared to male ROB carriers. In the majority of asymptomatic male carriers of homologous translocation/isochromosome (HT), spermatogenesis is not impaired. An analysis of sex ratio among ill-defined HT carriers showed a difference between patients with Prader-Willi syndrome and Angelman syndrome, indicating different mechanisms of HT formation

    Gender Affects Clinical Suspicion of Down Syndrome

    Get PDF

    Temperature-induced reversal effects of kink dynamics in carbon nanotube on flat substrate

    Full text link
    Carbon nanotubes are nano-objects with quite anisotropic properties, for example the mechanical properties in longitudinal and radial directions differ significantly. This feature of the carbon nanotubes yields many interesting phenomena investigated in last decades. One of them is the ability to form both hollow and collapsed states if the radius of the nanotube is large enough. The transitions between the two states have been also reported. In our study we present single-walled carbon nanotube interacting with a plane substrate and characterize the energy of interaction with the substrate using effective Lennard-Jones-type potential. We show energy of the homogeneous open and collapsed states depending on the radius of the carbon nanotube and report on the bi-stability in some range of the nanotube diameters. Using the molecular-dynamical simulations we look at the evolution of the initial half-opened, half-collapsed state and demonstrate that the transition area from one state to another is spatially localized having features of topological soliton (kink or anti-kink). We show that the value and the direction of the kink propagation speed depend significantly on the nanotube diameter as well as on the temperature of the system. We also discuss the mechanism of the process using a simplified model with asymmetric double-well potential and show the entropic nature of the transition.Comment: 9 pages, 8 figure

    In-Plane Spectral Weight Shift of Charge Carriers in YBa2Cu3O6.9YBa_2Cu_3O_{6.9}

    Full text link
    The temperature dependent redistribution of the spectral weight of the CuO2CuO_2 plane derived conduction band of the YBa2Cu3O6.9YBa_2Cu_3O_{6.9} high temperature superconductor (T_c = 92.7 K) was studied with wide-band (from 0.01 to 5.6 eV) spectroscopic ellipsometry. A superconductivity - induced transfer of the spectral weight involving a high energy scale in excess of 1 eV was observed. Correspondingly, the charge carrier spectral weight was shown to decrease in the superconducting state. The ellipsometric data also provide detailed information about the evolution of the optical self-energy in the normal and superconducting states

    Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study

    Get PDF
    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors.Comment: 30 pages, 6 Figure

    Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral

    Get PDF
    In this paper we describe a route to produce crystalline Mg(OH)2 nanopowders from serpentinite ore distributed in the Halilovskiy array (Russia, Orenburg region). An efficient extraction route consisting of treatment on serpentinite in 40% HNO3 at 80 C followed by NH4OH titration for Mg(OH)2 precipitation was demonstrate

    Infrared studies of a La_(0.67)Ca_(0.33)MnO_3 single crystal: Optical magnetoconductivity in a half-metallic ferromagnet

    Get PDF
    The infrared reflectivity of a La_(0.67)Ca_(0.33)MnO_3 single crystal is studied over a broad range of temperatures (78–340 K), magnetic fields (0–16 T), and wave numbers (20–9000cm^(-1)). The optical conductivity gradually changes from a Drude-like behavior to a broad peak feature near 5000cm-1 in the ferromagnetic state below the Curie temperature T_C=307K. Various features of the optical conductivity bear striking resemblance to recent theoretical predictions based on the interplay between the double exchange interaction and the Jahn-Teller electron-phonon coupling. A large optical magnetoconductivity is observed near T_C

    Infrared Studies of a La_{0.67}Ca_{0.33}MnO_3 Single Crystal: Optical Magnetoconductivity in a Half-Metallic Ferromagnet

    Get PDF
    The infrared reflectivity of a La0.67Ca0.33MnO3\rm La_{0.67}Ca_{0.33}MnO_3 single crystal is studied over a broad range of temperatures (78-340 K), magnetic fields (0-16 T), and wavenumbers (20-9000 cm1^{-1}). The optical conductivity gradually changes from a Drude-like behavior to a broad peak feature near 5000 cm1^{-1} in the ferromagnetic state below the Curie temperature TC=307KT_C=307 K. Various features of the optical conductivity bear striking resemblance to recent theoretical predictions based on the interplay between the double exchange interaction and the Jahn-Teller electron-phonon coupling. A large optical magnetoconductivity is observed near TCT_C.Comment: 4 pages, 4 figures, Latex, PostScript; The 7th Joint MMM-Intermag Conference,San Francisco, January 6-9, 1998; The Int. Conf. on Strongly Correlated Electron Systems, Paris, July 15-18,199

    Anomalous oxygen isotope effect on the in-plane FIR conductivity of detwinned YBa2Cu316,18^{16,18}O6.9_{6.9}

    Full text link
    We observe an anomalous oxygen isotope effect on the a-axis component of the far-infrared electronic response of detwinned YBa2Cu316,18^{16,18}O6.9_{6.9}. For 18^{18}O a pronounced low-energy electronic mode (LEM) appears around 240 cm1^{-1}. This a-axis LEM exhibits a clear aging effect, after one year it is shifted to 190 cm1^{-1}. For 16^{16}O we cannot resolve a corresponding a-axis LEM above 120 cm1^{-1}. We interpret the LEM in terms of a collective electronic mode that is pinned by `isotopic defects', i.e. by the residual 16^{16}O in the matrix of 18^{18}O.Comment: 10 pages, 2 figure
    corecore