294 research outputs found

    Star formation in mergers with cosmologically motivated initial conditions

    Get PDF
    We use semi-analytic models and cosmological merger trees to provide the initial conditions for multi-merger numerical hydrodynamic simulations, and exploit these simulations to explore the effect of galaxy interaction and merging on star formation (SF). We compute numerical realisations of twelve merger trees from z=1.5 to z=0. We include the effects of the large hot gaseous halo around all galaxies, following recent obervations and predictions of galaxy formation models. We find that including the hot gaseous halo has a number of important effects. Firstly, as expected, the star formation rate on long timescales is increased due to cooling of the hot halo and refuelling of the cold gas reservoir. Secondly, we find that interactions do not always increase the SF in the long term. This is partially due to the orbiting galaxies transferring gravitational energy to the hot gaseous haloes and raising their temperature. Finally we find that the relative size of the starburst, when including the hot halo, is much smaller than previous studies showed. Our simulations also show that the order and timing of interactions are important for the evolution of a galaxy. When multiple galaxies interact at the same time, the SF enhancement is less than when galaxies interact in series. All these effects show the importance of including hot gas and cosmologically motivated merger trees in galaxy evolution models.Comment: 19 pages, 15 figures, 6 tables. Accepted for publication in MNRA

    Theory and simulation of spectral line broadening by exoplanetary atmospheric haze

    Full text link
    Atmospheric haze is the leading candidate for the flattening of expolanetary spectra, as it's also an important source of opacity in the atmospheres of solar system planets, satellites, and comets. Exoplanetary transmission spectra, which carry information about how the planetary atmospheres become opaque to stellar light in transit, show broad featureless absorption in the region of wavelengths corresponding to spectral lines of sodium, potassium and water. We develop a detailed atomistic model, describing interactions of atomic or molecular radiators with dust and atmospheric haze particulates. This model incorporates a realistic structure of haze particulates from small nano-size seed particles up to sub-micron irregularly shaped aggregates, accounting for both pairwise collisions between the radiator and haze perturbers, and quasi-static mean field shift of levels in haze environments. This formalism can explain large flattening of absorption and emission spectra in haze atmospheres and shows how the radiator - haze particle interaction affects the absorption spectral shape in the wings of spectral lines and near their centers. The theory can account for nearly all realistic structure, size and chemical composition of haze particulates and predict their influence on absorption and emission spectra in hazy environments. We illustrate the utility of the method by computing shift and broadening of the emission spectra of the sodium D line in an argon haze. The simplicity, elegance and generality of the proposed model should make it amenable to a broad community of users in astrophysics and chemistry.Comment: 16 pages, 4 figures, submitted to MNRA

    From Discs to Bulges: effect of mergers on the morphology of galaxies

    Get PDF
    We study the effect of mergers on the morphology of galaxies by means of the simulated merger tree approach first proposed by Moster et al. This method combines N-body cosmological simulations and semi-analytic techniques to extract realistic initial conditions for galaxy mergers. These are then evolved using high resolution hydrodynamical simulations, which include dark matter, stars, cold gas in the disc and hot gas in the halo. We show that the satellite mass accretion is not as effective as previously thought, as there is substantial stellar stripping before the final merger. The fraction of stellar disc mass transferred to the bulge is quite low, even in the case of a major merger, mainly due to the dispersion of part of the stellar disc mass into the halo. We confirm the findings of Hopkins et al., that a gas rich disc is able to survive major mergers more efficiently. The enhanced star formation associated with the merger is not localised to the bulge of galaxy, but a substantial fraction takes place in the disc too. The inclusion of the hot gas reservoir in the galaxy model contributes to reducing the efficiency of bulge formation. Overall, our findings suggest that mergers are not as efficient as previously thought in transforming discs into bulges. This possibly alleviates some of the tensions between observations of bulgeless galaxies and the hierarchical scenario for structure formation.Comment: MNRAS Accepted, 17 pages, 11 figures, 3 Table

    Thin-shell wormholes with a generalized Chaplygin gas

    Get PDF
    In this article, spherically symmetric thin-shell wormholes supported by a generalized Chaplygin gas are constructed and their stability under perturbations preserving the symmetry is studied. Wormholes with charge and with a cosmological constant are analyzed and the results are compared with those obtained for the original Chaplygin gas, which was considered in a previous work. For some values of the parameters, one stable configuration is also present and a new extra unstable solution is found.Comment: 14 pages, 6 figures; v2: typos corrected and minor rewordin

    Mechanism of Deep-focus Earthquakes Anomalous Statistics

    Full text link
    Analyzing the NEIC-data we have shown that the spatial deep-focus earthquake distribution in the Earth interior over the 1993-2006 is characterized by the clearly defined periodical fine discrete structure with period L=50 km, which is solely generated by earthquakes with magnitude M 3.9 to 5.3 and only on the convergent boundary of plates. To describe the formation of this structure we used the model of complex systems by A. Volynskii and S. Bazhenov. The key property of this model consists in the presence of a rigid coating on a soft substratum. It is shown that in subduction processes the role of a rigid coating plays the slab substance (lithosphere) and the upper mantle acts as a soft substratum. Within the framework of this model we have obtained the estimation of average values of stress in the upper mantle and Young's modulus for the oceanic slab (lithosphere) and upper mantle.Comment: 9 pages, 7 figure

    Stability of Chaplygin gas thin-shell wormholes

    Full text link
    In this paper we construct spherical thin-shell wormholes supported by a Chaplygin gas. For a rather general class of geometries we introduce a new approach for the stability analysis of static solutions under perturbations preserving the symmetry. We apply this to wormholes constructed from Schwarzschild, Schwarzschild-de Sitter, Schwarzschild-anti de Sitter and Reissner-Nordstrom metrics. In the last two cases, we find that there are values of the parameters for which stable static solutions exist.Comment: 14 pages, 5 figures; v2: minor changes and new references added. Accepted for publication in Physical Review

    Isolated Gust Generation for the Investigation of Airfoil-Gust Interaction

    Get PDF
    As part of an effort to examine the impact of vortical gusts on airfoils, a simple gust generator has been built and investigated. This consists of a heaving at plate capable of following a specifed transverse trajectory across a water tunnel. The relationship between the trajectory and the properties of the gusts that are shed downstream is characterized for non-periodic heaving motion described by Eldredge's smooth motion equation. PIV experiments show that the circulation of the vortical gust is proportional to the heaving speed of the plate. Tests with a downstream NACA 0018 airfoil demonstrate repeatable forces in response to the produced gusts

    On a direct approach to quasideterminant solutions of a noncommutative KP equation

    Full text link
    A noncommutative version of the KP equation and two families of its solutions expressed as quasideterminants are discussed. The origin of these solutions is explained by means of Darboux and binary Darboux transformations. Additionally, it is shown that these solutions may also be verified directly. This approach is reminiscent of the wronskian technique used for the Hirota bilinear form of the regular, commutative KP equation but, in the noncommutative case, no bilinearising transformation is available.Comment: 11 page

    КИНЕМАТИКА И ДИНАМИКА ШАРИКОВ ПРИ ШЛИФОВАНИИ МЕЖДУ НЕСООСНЫМИ ДИСКАМИ В ПРИВОДНОМ СЕПАРАТОРЕ

    Get PDF
    The paper contains description of tool design which is used for rough polishing of balls made of brittle materials. This tool consists of top disk, which is fi-eely set on pouring bearing of the separator shaft, and a bottom disk with elastic coating. Theoretical investigations of ball kinematics have permitted to determine an angular velocity of the balls in the machining zone, value and direction oi slipping speed with respect to the tool.it has been determined that even change of the position of bail rotation instantaneous axis relative to the separator is reached at equality of angular velocities of the bottom disk and the separator. When the top disk is freely set slipping speed is equal for all the balls of the machined lot. When the top disk is stationary slipping speed is significantly increasing however its value becomes variable and depends on ball distance to separator rotation axis.The presented equations of ball dynamics in the machining zone have made it possible to detennine a cohesive force with the bottom disk, frictional forces against the top disk and separator. Recommendations on selection of machining modes at initial and final stages of ball polishing are given in the paper.Приведено описание конструкции инструмента для грубого шлифования шариков из хрупких материалов, в состав которого входит верхний диск, свободно установленный на валу сепаратора на насыпном подшипнике, и нижний диск с эластичным покрытием. Теоретические исследования кинематики шариков позволили определить угловую скорость шариков в зоне обработки, величину и направление скорости проскальзывания относительно инструмента.Установлено, что равномерное изменение положения мгновенной оси вращения шарика относительно сепаратора достигается при равенстве угловых скоростей нижнего диска и сепаратора. При свободно установленном верхнем диске скорость проскальзывания одинакова для всех шариков в обрабатываемой партии. При неподвижном верхнем диске скорость проскальзывания значительно возрастает, однако ее величина становится переменной и зависит от расстояния шарика до оси вращения сепаратора.Приведенные уравнения динамики шарика в зоне обработки позволяют определить силу сцепления с нижним диском, силы трения о верхний диск и сепаратор. Даны рекомендации по выбору режимов обработки на начальном и завершающем этапах шлифования шариков

    Power spectrum in the Chaplygin gas model: tachyonic, fluid and scalar field representations

    Full text link
    The Chaplygin gas model, characterized by an equation of state of the type p=Aρp = - \frac{A}{\rho} emerges naturally from the Nambu-Goto action of string theory. This fluid representation can be recast under the form of a tachyonic field given by a Born-Infeld type Lagrangian. At the same time, the Chaplygin gas equation of state can be obtained from a self-interacting scalar field. We show that, from the point of view of the supernova type Ia data, the three representations (fluid, tachyonic, scalar field) lead to the same results. However, concerning the matter power spectra, while the fluid and tachyonic descriptions lead to exactly the same results, the self-interacting scalar field representation implies different statistical estimations for the parameters. In particular, the estimation for the dark matter density parameter in the fluid representation favors a universe dominated almost completely by dark matter, while in the self-interacting scalar field representation the prediction is very closed to that obtained in the Λ\LambdaCDM model.Comment: Latex file, 10 pages, 18 figures in EPS forma
    corecore