35,482 research outputs found
Gamma-Ray Emission from Molecular Clouds Generated by Penetrating Cosmic Rays
We analyze the processes governing cosmic-ray (CR) penetration into molecular
clouds and the resulting generation of gamma-ray emission. The density of CRs
inside a cloud is depleted at lower energies due to the self-excited MHD
turbulence. The depletion depends on the effective gas column density ("size")
of the cloud. We consider two different environments where the depletion effect
is expected to be observed. For the Central Molecular Zone, the expected range
of CR energy depletion is GeV, leading to the depletion of
gamma-ray flux below GeV. This effect can be important for
the interpretation of the GeV gamma-ray excess in the Galactic Center, which
has been revealed from the standard model of CR propagation (assuming the CR
spectrum inside a cloud to be equal to the interstellar spectrum). Furthermore,
recent observations of some local molecular clouds suggest the depletion of the
gamma-ray emission, indicating possible self-modulation of the penetrating
low-energy CRs.Comment: 10 pages, 5 figures, accepted for publication in Ap
The quantum mechanical geometric phase of a particle in a resonant vibrating cavity
We study the general-setting quantum geometric phase acquired by a particle
in a vibrating cavity. Solving the two-level theory with the rotating-wave
approximation and the SU(2) method, we obtain analytic formulae that give
excellent descriptions of the geometric phase, energy, and wavefunction of the
resonating system. In particular, we observe a sudden -jump in the
geometric phase when the system is in resonance. We found similar behaviors in
the geometric phase of a spin-1/2 particle in a rotating magnetic field, for
which we developed a geometrical model to help visualize its evolution.Comment: 15pages,6figure
A comparative analysis of rawinsonde and NIMBUS 6 and TIROS N satellite profile data
Comparisons are made between rawinsonde and satellite profiles in seven areas for a wide range of surface and weather conditions. Variables considered include temperature, dewpoint temperature, thickness, precipitable water, lapse rate of temperature, stability, geopotential height, mixing ratio, wind direction, wind speed, and kinematic parameters, including vorticity and the advection of vorticity and temperature. In addition, comparisons are made in the form of cross sections and synoptic fields for selected variables. Sounding data from the NIMBUS 6 and TIROS N satellites were used. Geostrophic wind computed from smoothed geopotential heights provided large scale flow patterns that agreed well with the rawinsonde wind fields. Surface wind patterns as well as magnitudes computed by use of the log law to extrapolate wind to a height of 10 m agreed with observations. Results of this study demonstrate rather conclusively that satellite profile data can be used to determine characteristics of large scale systems but that small scale features, such as frontal zones, cannot yet be resolved
Generalized Darboux transformations for the KP equation with self-consistent sources
The KP equation with self-consistent sources (KPESCS) is treated in the
framework of the constrained KP equation. This offers a natural way to obtain
the Lax representation for the KPESCS. Based on the conjugate Lax pairs, we
construct the generalized binary Darboux transformation with arbitrary
functions in time for the KPESCS which, in contrast with the binary Darboux
transformation of the KP equation, provides a non-auto-B\"{a}cklund
transformation between two KPESCSs with different degrees. The formula for
N-times repeated generalized binary Darboux transformation is proposed and
enables us to find the N-soliton solution and lump solution as well as some
other solutions of the KPESCS.Comment: 20 pages, no figure
Particle acceleration and the origin of gamma-ray emission from Fermi Bubbles
Fermi LAT has discovered two extended gamma-ray bubbles above and below the
galactic plane. We propose that their origin is due to the energy release in
the Galactic center (GC) as a result of quasi-periodic star accretion onto the
central black hole. Shocks generated by these processes propagate into the
Galactic halo and accelerate particles there. We show that electrons
accelerated up to ~10 TeV may be responsible for the observed gamma-ray
emission of the bubbles as a result of inverse Compton (IC) scattering on the
relic photons. We also suggest that the Bubble could generate the flux of CR
protons at energies > 10^15 eV because the shocks in the Bubble have much
larger length scales and longer lifetimes in comparison with those in SNRs.
This may explain the the CR spectrum above the knee.Comment: 5 pages, 4 figures. Expanded version of the contribution to the 32nd
ICRC, Beijing, #0589. To appear in the proceeding
De-Excitation Gamma-ray Line Emission from the Galactic Center
International audienceA future detection of de-excitation gamma-ray lines from the Galactic center region would provide unique information on the high-energy processes induced by the the central black hole and the physical conditions of the emitting region. We analyse the intensity of nuclear de-excitation lines in the direction of the Galactic center produced by subrelativistic protons, which are generated by star capture by the central black hole. With the metallicity two times higher than the solar one the total flux in gamma-ray lines of energies below 8 MeV is about 10−4 cm−2 s−1. The most promising lines for detection are those at 4.44 and 6.2 MeV, with a predicted flux in each line of 10−5 photons cm−2 s−1. We also analyze the possibility of detection of these lines by INTEGRAL and future missions
Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope
We report the results from a detailed ray investigation in the field
of two "dark accelerators", HESS J1745-303 and HESS J1741-302, with years
of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we
found that its MeV-GeV emission is mainly originated from the "Region A" of the
TeV feature. Its ray spectrum can be modeled with a single power-law
with a photon index of from few hundreds MeV to TeV. Moreover,
an elongated feature, which extends from "Region A" toward northwest for
, is discovered for the first time. The orientation of this
feature is similar to that of a large scale atomic/molecular gas distribution.
For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for
this unidentified TeV source. On the other hand, we have detected a new point
source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved
which resembles that of a ray pulsar. This makes it possibly
associated with PSR B1737-20 or PSR J1739-3023.Comment: 11 pages, 7 figures, 2 tables, accepted for publication in MNRA
Time-Dependent Symmetries of Variable-Coefficient Evolution Equations and Graded Lie Algebras
Polynomial-in-time dependent symmetries are analysed for polynomial-in-time
dependent evolution equations. Graded Lie algebras, especially Virasoro
algebras, are used to construct nonlinear variable-coefficient evolution
equations, both in 1+1 dimensions and in 2+1 dimensions, which possess
higher-degree polynomial-in-time dependent symmetries. The theory also provides
a kind of new realisation of graded Lie algebras. Some illustrative examples
are given.Comment: 11 pages, latex, to appear in J. Phys. A: Math. Ge
Inelastic electron tunneling via molecular vibrations in single-molecule transistors
In single-molecule transistors, we observe inelastic cotunneling features
that correspond energetically to vibrational excitations of the molecule, as
determined by Raman and infrared spectroscopy. This is a form of inelastic
electron tunneling spectroscopy of single molecules, with the transistor
geometry allowing in-situ tuning of the electronic states via a gate electrode.
The vibrational features shift and change shape as the electronic levels are
tuned near resonance, indicating significant modification of the vibrational
states. When the molecule contains an unpaired electron, we also observe
vibrational satellite features around the Kondo resonance.Comment: 5 pages, 4 figures. Supplementary information available upon reques
Deterministic spatio-temporal control of nano-optical fields in optical antennas and nano transmission lines
We show that pulse shaping techniques can be applied to tailor the ultrafast
temporal response of the strongly confined and enhanced optical near fields in
the feed gap of resonant optical antennas (ROAs). Using finite-difference
time-domain (FDTD) simulations followed by Fourier transformation, we obtain
the impulse response of a nano structure in the frequency domain, which allows
obtaining its temporal response to any arbitrary pulse shape. We apply the
method to achieve deterministic optimal temporal field compression in ROAs with
reduced symmetry and in a two-wire transmission line connected to a symmetric
dipole antenna. The method described here will be of importance for experiments
involving coherent control of field propagation in nanophotonic structures and
of light-induced processes in nanometer scale volumes.Comment: 5 pages, 5 figure
- …