2,041 research outputs found

    Superfluid currents in half-moon polariton condensates

    Full text link
    We excite exciton-polariton condensates in half-moon shapes by the non-resonant optical excitation of GaAs-based cylindrical pillar microcavities. In this geometry, the {\pi}-jump of the phase of the condensate wave function coexists with a gradual {\pm \pi} phase variation between two horns of the half-moon. We switch between clockwise and counter-clockwise phase currents by slightly shifting the excitation spot on the surface of the pillar. Half-moon condensates are expected to reveal features of two-level quantum systems similar to superconducting flux qubit

    Fractional Variations for Dynamical Systems: Hamilton and Lagrange Approaches

    Full text link
    Fractional generalization of an exterior derivative for calculus of variations is defined. The Hamilton and Lagrange approaches are considered. Fractional Hamilton and Euler-Lagrange equations are derived. Fractional equations of motion are obtained by fractional variation of Lagrangian and Hamiltonian that have only integer derivatives.Comment: 21 pages, LaTe

    Solitons in cavity-QED arrays containing interacting qubits

    Full text link
    We reveal the existence of polariton soliton solutions in the array of weakly coupled optical cavities, each containing an ensemble of interacting qubits. An effective complex Ginzburg-Landau equation is derived in the continuum limit taking into account the effects of cavity field dissipation and qubit dephasing. We have shown that an enhancement of the induced nonlinearity can be achieved by two order of the magnitude with a negative interaction strength which implies a large negative qubit-field detuning as well. Bright solitons are found to be supported under perturbations only in the upper (optical) branch of polaritons, for which the corresponding group velocity is controlled by tuning the interacting strength. With the help of perturbation theory for solitons, we also demonstrate that the group velocity of these polariton solitons is suppressed by the diffusion process

    Soliton content in the standard optical OFDM signal

    Get PDF
    The nonlinear Schrödinger equation (NLSE) is often used as a master path-average model for fiber-optic transmission lines. In general, the NLSE describes the co-existence of dispersive waves and soliton pulses. The propagation of a signal in such a nonlinear channel is conceptually different from linear systems. We demonstrate here that the conventional orthogonal frequency-division multiplexing (OFDM) input optical signal at powers typical for modern communication systems might have soliton components statistically created by the random process corresponding to the information content. Applying the Zakharov–Shabat spectral problem to a single OFDM symbol with multiple subcarriers, we quantify the effect of the statistical soliton occurrence in such an information-bearing optical signal. Moreover, we observe that at signal powers optimal for transmission, an OFDM symbol incorporates multiple solitons with high probability. The considered optical communication example is relevant to a more general physical problem of the generation of coherent structures from noise

    Dynamics of fluctuations in an optical analog of the Laval nozzle

    Full text link
    Using the analogy between the description of coherent light propagation in a medium with Kerr nonlinearity by means of nonlinear Schr\"odinger equation and that of a dissipationless liquid we propose an optical analogue of the Laval nozzle. The optical Laval nozzle will allow one to form a transonic flow in which one can observe and study a very unusual dynamics of classical and quantum fluctuations including analogue of the Hawking radiation of real black holes. Theoretical analysis of this dynamics is supported by numerical calculations and estimates for a possible experimental setup are presented.Comment: 7 pages, 4 figure

    Coronal mass ejections as expanding force-free structures

    Full text link
    We mode Solar coronal mass ejections (CMEs) as expanding force-fee magnetic structures and find the self-similar dynamics of configurations with spatially constant \alpha, where {\bf J} =\alpha {\bf B}, in spherical and cylindrical geometries, expanding spheromaks and expanding Lundquist fields correspondingly. The field structures remain force-free, under the conventional non-relativistic assumption that the dynamical effects of the inductive electric fields can be neglected. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, induced by inductive electric field. The structures depends only on overall radius R(t) and rate of expansion \dot{R}(t) measured at a given moment, and thus are applicable to arbitrary expansion laws. In case of cylindrical Lundquist fields, the flux conservation requires that both axial and radial expansion proceed with equal rates. In accordance with observations, the model predicts that the maximum magnetic field is reached before the spacecraft reaches the geometric center of a CME.Comment: 19 pages, 9 Figures, accepted by Solar Physic

    A past capture event at Sagittarius A* inferred from the fluorescent X-ray emission of Sagittarius B clouds

    Get PDF
    The fluorescent X-ray emission from neutral iron in the molecular clouds (Sgr B) indicates that the clouds are being irradiated by an external X-ray source. The source is probably associated with the Galactic central black hole (Sgr A*), which triggered a bright outburst one hundred years ago. We suggest that such an outburst could be due to a partial capture of a star by Sgr A*, during which a jet was generated. By constraining the observed flux and the time variability (∌\sim 10 years) of the Sgr B's fluorescent emission, we find that the shock produced by the interaction of the jet with the dense interstellar medium represents a plausible candidate for the X-ray source emission.Comment: 7 pages, 1 figure, accepted for publication in MNRA
    • 

    corecore