3,163 research outputs found

    QCD Corrections to Electroweak Annihilation Decays of Superheavy Quarkonia

    Get PDF
    QCD corrections to all the allowed decays of superheavy groundstate quarkonia into electroweak gauge and Higgs bosons are presented. For quick estimates, approximations that reproduce the exact results within less than at worst two percent are also given.Comment: 20 pages RevTeX, 9 figures. The complete paper, including figures, is also available via anonymous ftp at (129.13.102.139) as ftp://ttpux2.physik.uni-karlsruhe.de/ttp95-05/ttp95-05.ps, or via www at http://ttpux2.physik.uni-karlsruhe.de/cgi-bin/preprints

    Universality in Glassy Low-Temperature Physics

    Full text link
    We propose a microscopic translationally invariant glass model which exhibits two level tunneling systems with a broad range of asymmetries and barrier heights in its glassy phase. Their distribution is qualitatively different from what is commonly assumed in phenomenological models, in that symmetric tunneling systems are systematically suppressed. Still, the model exhibits the usual glassy low-temperature anomalies. Universality is due to the collective origin of the glassy potential energy landscape. We obtain a simple explanation also for the mysterious {\em quantitative} universality expressed in the unusually narrow universal glassy range of values for the internal friction plateau.Comment: 4 pages, 5 figures, uses RevTeX

    Quantization of the elastic modes in an isotropic plate

    Full text link
    We quantize the elastic modes in a plate. For this, we find a complete, orthogonal set of eigenfunctions of the elastic equations and we normalize them. These are the phonon modes in the plate and their specific forms and dispersion relations are manifested in low temperature experiments in ultra-thin membranes.Comment: 14 pages, 2 figure

    Gluon Fragmentation into Heavy Quarkonium

    Full text link
    The dominant production mechanism for heavy quark-antiquark bound states in very high energy processes is fragmentation, the splitting of a high energy parton into a quarkonium state and other partons. We show that the fragmentation functions D(z,μ)D(z,\mu) describing these processes can be calculated using perturbative QCD. We calculate the fragmentation functions for a gluon to split into S-wave quarkonium states to leading order in the QCD coupling constant. The leading logarithms of μ/mQ\mu/m_Q, where μ\mu is the factorization scale and mQm_Q is the heavy quark mass, are summed up using Altarelli-Parisi evolution equations.Comment: LateX 11 pages (3 figures available upon request). NUHEP-TH-92-2

    Modification of single molecule fluorescence by a scanning probe

    Get PDF
    We examine the optical near-field interaction between different types of scanning tips and single oriented fluorescent molecules. We demonstrate the influence of a tip on the excitation intensity as well as on the integrated fluorescence signal, the excited state lifetime, and the angular emission of single molecules. By using a standard model describing the radiation of an oscillating dipole close to a nanosphere or a flat interface, we interpret our observations and describe some central criteria for obtaining fluorescence enhancement or quenchin

    Laser Control of Dissipative Two-Exciton Dynamics in Molecular Aggregates

    Full text link
    There are two types of two-photon transitions in molecular aggregates, that is, non-local excitations of two monomers and local double excitations to some higher excited intra-monomer electronic state. As a consequence of the inter-monomer Coulomb interaction these different excitation states are coupled to each other. Higher excited intra-monomer states are rather short-lived due to efficient internal conversion of electronic into vibrational energy. Combining both processes leads to the annihilation of an electronic excitation state, which is a major loss channel for establishing high excitation densities in molecular aggregates. Applying theoretical pulse optimization techniques to a Frenkel exciton model it is shown that the dynamics of two-exciton states in linear aggregates (dimer to tetramer) can be influenced by ultrafast shaped laser pulses. In particular, it is studied to what extent the decay of the two-exciton population by inter-band transitions can be transiently suppressed. Intra-band dynamics is described by a dissipative hierarchy equation approach, which takes into account strong exciton-vibrational coupling in the non-Markovian regime.Comment: revised version, fig. 8 ne

    Charge asymmetries of top quarks at hadron colliders revisited

    Get PDF
    A sizeable difference in the differential production cross section of top- compared to antitop-quark production, denoted charge asymmetry, has been observed at the Tevatron. The experimental results seem to exceed the theory predictions based on the Standard Model by a significant amount and have triggered a large number of suggestions for "new physics". In the present paper the Standard Model predictions for Tevatron and LHC experiments are revisited. This includes a reanalysis of electromagnetic as well as weak corrections, leading to a shift of the asymmetry by roughly a factor 1.1 when compared to the results of the first papers on this subject. The impact of cuts on the transverse momentum of the top-antitop system is studied. Restricting the ttbar system to a transverse momentum less than 20 GeV leads to an enhancement of the asymmetries by factors between 1.3 and 1.5, indicating the importance of an improved understanding of the ttˉt\bar t-momentum distribution. Predictions for similar measurements at the LHC are presented, demonstrating the sensitivity of the large rapidity region both to the Standard Model contribution and effects from "new physics".Comment: 23 pages. Final version to appear in JHE
    • …
    corecore