676 research outputs found

    Changes in the cerebellar cytoarchitecture of hibernating hedgehog Erinaceus europaeus L. (Mammalia): an immunocytochemical approach

    Get PDF
    Hibernation is an amazing animal strategy to survive when the environmental temperature is very low and food resources are scarce. Successful hibernation requires a variety of complex biological adaptations, in which the brain plays a central regulatory role. Currently, little information is available regarding the morphology and functional activity of specific neurons within the cerebellar cytoarchitecture of hibernating animals. In the present study, we investigated the immunohistochemical expression of essential proteins in the cerebellum of a mammalian hibernator (i.e. hedgehog Erinaceus europaeus L.), focusing on (i) Purkinje neurons, the sole output cells of the cerebellar cortex; (ii) selected neurotransmitters involved in hibernation processes; (iii) intracellular calcium homeostasis, considering that calcium is also an important regulator of neurotransmission mechanisms; and (iv) cytoskeletal proteins, involved in maintenance of neuronal shape and axon calibre. Specifically, we studied in situ immunocytochemical changes during the torpor state of hibernation (November–March) versus the activity phase (April–September). We employed different selected markers, i.e. glutamic acid decarboxylase (GAD67) and postsynaptic glutamate ionotropic receptor GluR2-3, different calcium-binding proteins (i.e. calbindin, parvalbumin and calretinin) and cytoskeletal components (i.e. pNF-H and MAP2). In summary, our data in hibernating animals demonstrated: (i) downregulation of GAD67, indicating loss/changes of synaptic contacts on Purkinje somata and dendrites; (ii) GluR2-3 upregulation in Purkinje neurons, with a drastic decrease of calbindin expression; and (iii) decrease of normal mechanisms regulating intracellular calcium homeostasis. We also found a decrease/modification in the distribution of cytoskeletal proteins, particularly evident for pNF-H. Changes in the functional activity of Purkinje cells were accompanied by some morphological dendrite alterations, signs of degeneration in cell somata and flattened basket pinceaux at the Purkinje axon hillock. These findings confirm that hibernation makes heterothermic animals a valuable model to study physiological adaptations to adverse conditions, and also for understanding cellular and molecular mechanisms aimed at preserving mammalian organs from full degeneration and death

    Earth-skimming UHE Tau Neutrinos at the Fluorescence Detector of Pierre Auger Observatory

    Full text link
    Ultra high energy neutrinos are produced by the interaction of hadronic cosmic rays with the cosmic radiation background. More exotic scenarios like topological defects or new hadrons predict even larger fluxes. In particular, Earth-skimming tau neutrinos could be detected by the Fluorescence Detector (FD) of Pierre Auger Observatory. A detailed evaluation of the expected number of events has been performed for a wide class of neutrino flux models. An updated computation of the neutrino-nucleon cross section and of the tau energy losses has been carried out. For the most optimistic theoretical models, about one Earth-skimming neutrino event is expected in several years at FD.Comment: 26 pages, 13 figures, version accepted for publication on Astroparticle Physic

    The Technique Research on Account Information Signing in the Commercial Bank Channel Trade System

    Get PDF
    摘要 在经济全球化发展的大背景下,开放和竞争已经成为世界金融发展的主流,银行业的全球竞争将日益激烈。商业银行要想在激烈的市场竞争中立于不败之地并持续发展,就需要加快金融创新、科技创新,提高核心竞争力。随着金融信息化建设的不断深入,商业银行信息系统集中化程度越来越高。正在建立的“账户信息签约系统”将不同的各个孤岛中的账户进行签约处理,使其提供客户的账户信息、银行的交易渠道链接共享,拓展多交易渠道互动及增强交易渠道个性化服务能力,实现跨交易渠道识别客户并通过签约服务应用系统为客户提供方便、快捷的账户信息。 本文分析了商业银行信息资源的特征和服役的各个系统的特点,论证了建立“账户信息签约系统”的...Abstract Under the development of economic globalization, the opening and competition has become the mainstream of financial development in twenty-one century, and the competition between international banks tends to be fiercer. If commercial banks want to succeed in this process and keep developing, they need speed up their financial and technological innovations to improve the core comp...学位:工程硕士院系专业:软件学院_工程硕士(软件工程)学号:X200523001

    Cooper pair sizes in 11Li and in superfluid nuclei: a puzzle?

    Full text link
    We point out a strong influence of the pairing force on the size of the two neutron Cooper pair in 11^{11}Li, and to a lesser extent also in 6^6He. It seems that these are quite unique situations, since Cooper pair sizes of stable superfluid nuclei are very little influenced by the intensity of pairing, as recently reported. We explore the difference between 11^{11}Li and heavier superfulid nuclei, and discuss reasons for the exceptional situation in 11^{11}Li.Comment: 9 pages. To be published in J. of Phys. G special issue on Open Problems in Nuclear Structure (OPeNST

    Upper Bounds on the Neutrino-Nucleon Inelastic Cross Section

    Full text link
    Extraterrestrial neutrinos can initiate deeply developing air showers, and those that traverse the atmosphere unscathed may produce cascades in the ice or water. Up to now, no such events have been observed. This can be translated into upper limits on the diffuse neutrino flux. On the other hand, the observation of cosmic rays with primary energies > 10^{10} GeV suggests that there is a guaranteed flux of cosmogenic neutrinos, arising from the decay of charged pions (and their muon daughters) produced in proton interactions with the cosmic microwave background. In this work, armed with these cosmogenic neutrinos and the increased exposure of neutrino telescopes we bring up-to-date model-independent upper bounds on the neutrino-nucleon inelastic cross section. Uncertainties in the cosmogenic neutrino flux are discussed and taken into account in our analysis. The prospects for improving these bounds with the Pierre Auger Observatory are also estimated. The unprecedented statistics to be collected by this experiment in 6 yr of operation will probe the neutrino-nucleon inelastic cross section at the level of Standard Model predictions.Comment: To be published in JCA

    Directed flow in Au+Au, Xe+CsI and Ni+Ni collisions and the nuclear equation of state

    Full text link
    We present new experimental data on directed flow in collisions of Au+Au, Xe+CsI and Ni+Ni at incident energies from 90 to 400A MeV. We study the centrality and system dependence of integral and differential directed flow for particles selected according to charge. All the features of the experimental data are compared with Isospin Quantum Molecular Dynamics (IQMD) model calculations in an attempt to extract information about the nuclear matter equation of state (EoS). We show that the combination of rapidity and transverse momentum analysis of directed flow allow to disentangle various parametrizations in the model. At 400A MeV, a soft EoS with momentum dependent interactions is best suited to explain the experimental data in Au+Au and Xe+CsI, but in case of Ni+Ni the model underpredicts flow for any EoS. At 90A MeV incident beam energy, none of the IQMD parametrizations studied here is able to consistently explain the experimental data.Comment: RevTeX, 20 pages, 30 eps figures, accepted for publication in Phys. Rev. C. Data files available at http://www.gsi.de/~fopiwww/pub

    The energy dependence of flow in Ni induced collisions from 400 to 1970A MeV

    Get PDF
    We study the energy dependence of collective (hydrodynamic-like) nuclear matter flow in 400-1970 A MeV Ni+Au and 1000-1970 A MeV Ni+Cu reactions. The flow increases with energy, reaches a maximum, and then gradually decreases at higher energies. A way of comparing the energy dependence of flow values for different projectile-target mass combinations is introduced, which demonstrates a common scaling behaviour among flow values from different systems.Comment: 12 pages, 3 figures. Submitted to Physical Review Letter

    The Particle Physics Reach of High-Energy Neutrino Astronomy

    Full text link
    We discuss the prospects for high-energy neutrino astronomy to study particle physics in the energy regime comparable to and beyond that obtainable at the current and planned colliders. We describe the various signatures of high-energy cosmic neutrinos expected in both neutrino telescopes and air shower experiments and discuss these measurements within the context of theoretical models with a quantum gravity or string scale near a TeV, supersymmetry and scenarios with interactions induced by electroweak instantons. We attempt to access the particle physics reach of these experiments.Comment: Mini-review article for New Journal of Physics, "Focus on Neutrinos" issue. 27 pages, 11 figure
    corecore