35 research outputs found

    Design and implementation of automatic water spraying system for solar photovoltaic module

    Get PDF
    Photovoltaic (PV) cell has a characteristic of decrease in power beyond a certain temperature. This decrease in power is due to a drop in the open circuit cell voltage. This decreases the efficiency of the PV cell. The objective of this research is to increase the efficiency of PV cells by reducing the PV cell temperature and reflection loss. The cell temperature and reflection loss can be reduced by spraying water over the PV cells. On spraying water over the USP36, 24V PV module, the power is found to be increased. The test result shows a 1V to 2V increase in voltage, with an efficiency increment of 1% to 1.27%. The test results of USP37 show the voltage increase of 1.2 V to 2.1 V in the PV module voltage. Due to the increase in voltage, efficiency increment of 1.29% is observed. The efficiency of USP36 with water spraying is more than the efficiency of USP37 without water spraying. In the PV power systems, an average increase in efficiency of 0.5% is observed

    Design and Analysis of Model Predictive Control based Direct and Indirect Current strategy for Single Phase Shunt Active Power Filter

    No full text
    In this paper presents a comparative analysis of two control method applied to a single phase Shunt Active Power Filter (SAPF). It is about Model Predictive Control (MPC) based Direct Current Control (DCC) and Indirect Current Control (IDCC) strategy. The performances of two current control strategies were verified through a simulation with MATLABSimulink Software. Simulation results confirmed that compared to the DCC strategy, the IDCC strategy using MPC becomes simpler and need less hardware components

    Mathematical Modelling of High Voltage Gain Converter Using P and O for PV Based Application

    No full text
    This manuscript proposes a novel single switch converter which attains high voltage gain using P and O algorithm. The proposed converter is multilevel with voltage tripler technique. Here the output voltage gain attained is 11 times than the input source. The voltage ripple attained is less compared to other models. The main advantage of the converter is high efficiency, reduced switch loss, high gain and reduction in ripple. The converter attains efficiency of 97.3% at full load condition. The proposed converter is analysed by both Simulink MATALAB and Hardware prototype

    Mathematical Modelling of High Voltage Gain Converter Using P and O for PV Based Application

    No full text
    This manuscript proposes a novel single switch converter which attains high voltage gain using P and O algorithm. The proposed converter is multilevel with voltage tripler technique. Here the output voltage gain attained is 11 times than the input source. The voltage ripple attained is less compared to other models. The main advantage of the converter is high efficiency, reduced switch loss, high gain and reduction in ripple. The converter attains efficiency of 97.3% at full load condition. The proposed converter is analysed by both Simulink MATALAB and Hardware prototype

    Design and Analysis of Model Predictive Control based Direct and Indirect Current strategy for Single Phase Shunt Active Power Filter

    No full text
    In this paper presents a comparative analysis of two control method applied to a single phase Shunt Active Power Filter (SAPF). It is about Model Predictive Control (MPC) based Direct Current Control (DCC) and Indirect Current Control (IDCC) strategy. The performances of two current control strategies were verified through a simulation with MATLABSimulink Software. Simulation results confirmed that compared to the DCC strategy, the IDCC strategy using MPC becomes simpler and need less hardware components

    Design Approach of Grid Coupled Solar Inverter

    No full text
    In novel times, more demands are gained by grid connected solar inverters along with the upgrading of the solar energy generation. In grid connected solar power generation, if there is increase in placing more number of solar inverters it may result in effecting the power quality issues. Solar Grid Tied Inverter system is a electrical power generating system that is coupled to the functioning power grid. This power generating system unit consists of elements like Photovoltaic array, DC to DC converter, DC to AC converter, single phase/three phase converter, and AC Source. The inverter converts DC power generated by the array of photovoltaic cells into AC power and this generated AC power is fed to the connected AC loads. If the amount power generation is exceeding the power demanded, excess AC power is supplied to the grid. With this novel approach we can minimize the use of the AC power from the power grid and also even make a generation to the power grid and this is measured with help of net metering. In this paper designing of 281.6Kw grid tied solar power generation and technical specifications required for them are proposed

    Design Approach of Grid Coupled Solar Inverter

    No full text
    In novel times, more demands are gained by grid connected solar inverters along with the upgrading of the solar energy generation. In grid connected solar power generation, if there is increase in placing more number of solar inverters it may result in effecting the power quality issues. Solar Grid Tied Inverter system is a electrical power generating system that is coupled to the functioning power grid. This power generating system unit consists of elements like Photovoltaic array, DC to DC converter, DC to AC converter, single phase/three phase converter, and AC Source. The inverter converts DC power generated by the array of photovoltaic cells into AC power and this generated AC power is fed to the connected AC loads. If the amount power generation is exceeding the power demanded, excess AC power is supplied to the grid. With this novel approach we can minimize the use of the AC power from the power grid and also even make a generation to the power grid and this is measured with help of net metering. In this paper designing of 281.6Kw grid tied solar power generation and technical specifications required for them are proposed

    Preface

    No full text
    We would like to present, with great pleasure that the aim of the 2nd Virtual Conference on Advances in Electric Drives, Process Control and Automation (VCADPCA2020) is a platform for researchers, academicians as well as professionals from all over the world to present, discuss and promote advances in knowledge, research and practice in the field of Electric Drives, Process Control and Automation. VCADPCA2020 is offering a fantastic opportunity to attend a global scientific forum from the convenience of your desktop. No travelling, no hotel expenses, no time away from the office. The conference runs fully online, from paper submission, including reviewing, conference discussion and post conference processing. All papers will be referred to double tier approval process, single-blind peer-review and regular check. The online conference is a smart and affordable manner of presenting research results.Three leading universities VIT, India, Aalborg University Fibigerstræde, Denmark and University West, Sweden are organized this conference successfully on 9th June 2020. Keynote sessions are presented virtually from National and International experts in cutting edge technologies. The selected papers are presented by the authors virtually in the emerging fields like smart grid, power electronics, renewable energy, industrial automation, control and robotics. The panel members evaluated the research ideas and recommended for paper publications in IOP conference proceedings
    corecore