86 research outputs found

    Macrophage and tumor cell responses to repetitive pulsed X-ray radiation

    Get PDF
    To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. "Sinus-150" was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation

    Generation of electromagnetic fields of extremely high intensity by coherent summation of Cherenkov superradiance pulses

    Get PDF
    We demonstrate both theoretically and experimentally the possibility of correlating the phase of a Cherenkov superradiance (SR) pulse to the sharp edge of a current pulse, when spontaneous emission of the electron bunch edge serves as the seed for SR processes. By division of the driving voltage pulse across several parallel channels equipped with independent cathodes we can synchronize several SR sources to arrange a two-dimensional array. In the experiments carried out, coherent summation of radiation from four independent 8-mm wavelength band SR generators with peak power 600 MW results in the interference maximum of the directional diagram with an intensity that is equivalent to radiation from a single source with a power of 10 GW

    Coherent summation of emission from relativistic Cherenkov sources as a way of production of extremely high-intensity microwave pulses

    Get PDF
    For relativistic Cherenkov devices, we investigate the process of high-power microwave pulse generation with its phase correlating to the sharp edge of an e-beam current pulse. Our theoretical consideration is referred to quasi-stationary and superradiative (SR) generation regimes when spontaneous emission of the e-beam edge serves as the seed for the development of further coherent oscillations. Phase correlation of the excited microwave pulses with the characteristics of the current pulse front and/or an initial external electromagnetic pulse has been additionally confirmed by particle-in-cell simulations. Pulse-to-pulse stability of the radiation phase within several percents of the oscillation period makes it possible to arrange multichannel schemes producing mutually coherent microwave pulses. In the experiments that have been carried out, the cathodes of independent generators were powered by identical accelerating pulses from strictly synchronized voltage modulators, or by splitting the pulse from a single powerful modulator. For the 2-ns regime with the power of each Ka-band backward-wave oscillator about 100 MW, we demonstrate quadratic growth of the power density in the interference maximum of the directional diagram. In a short pulse SR regime, with the peak power of 600 MW in a single channel, for a four-channel 2-D array, we attained a 16-fold radiation intensity gain

    ΠšΠ»ΠΈΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ измСнСния тСрмичСских условий ΠšΠ°Ρ€ΡΠΊΠΎΠ³ΠΎ моря Π·Π° послСдниС 40 Π»Π΅Ρ‚

    Get PDF
    The paper discusses air (Ta) and sea surface temperature (SST) year-to-year variability due to warming of the Kara Sea, using the data from regular observations at the meteorological stations Roshydromet (GMS) in 1978–2017, NOAA optimum interpolation and reanalysis data. We use the methods of cluster, correlation analysis and Empirical Orthogonal Functions (EOF). We investigate possible cause and effect relationships of these changes with the variations of the wind field components, climatic indices and the sea ice concentration field. The cluster analysis of the three main EOF components has allowed us to identify four areas on the basis of the nature of changes of the water temperature anomalies field. The climatic changes in these areas, in the coastal and island zones of the Kara Sea have manifested themselves in the steady increase of the annual air temperature at GMS from 0,47–0,77 Β°C/10 years on the southwest coast to 1,33–1,49 Β°C/10 years in the north of the sea. This is equivalent to warming from 1,9 to 6,0 Β°C in the last 40 years. For the open sea the value of the Ta trend is about 1,22 Β°C/10 years, which corresponds to an increase in the average Ta by 4,9 Β°C in the last 40 years. This value is approximately 3 times greater than that for all the Northern hemisphere for the same period.Annualy, the maximal trend was observed in November and April mainly and exceeded 2–3 Β°C/10 years at some of the stations. We identify anomalously warm (2016 and 2012) and anomalously cold (1978, 1979, 1992 and 1998) years: the warmest year was 2012, the coldest β€” 1979. Positive SST trends were observed over all the sea area during the warm period of year (to 1 Β°C/10 years). SST increased to 2,4 Β°C, which is approximately 1,5 times greater than the corresponding SST values for the Northern hemisphere. The maximum SST trend (0,4 Β°C/10 years) was observed in the northwest and southwest parts of the sea. From June to August the trends of SST exceed the annual ones 1,5–2 times. Interannual SST and Ta variations are characterized by close correlation links. Until approximately 1998–2004 the warming was rather insignificant, and after that the growth rate of Ta and SST increased many fold. Apparently it indicates changes in the mode and the large-scale atmospheric circulation in the early 2000s. We also observed a trend of strengthening of the southern wind during the cold period of the year and the northern one β€” in the warm period (0,5–0,6 m/s in 40 years). It is shown that there is a close correlation between the Ta increase and the changes in the meridional component of the wind speed during the cold period of the year for all the sea areas. For the warm period it is statistically insignificant both for Ta and SST. For the cold season we observed a contribution of the large-scale mode of atmospheric circulation into the variability of V component of the wind speed. The conribution was expressed through the indeces NAO, SCAND, Pol/EUR, AZOR, ISL and the differences of ISLSIB. For the warm season this contribution is expressed through the NAO, SCAND and AO only. For the warm period we showed statistically significant correlation between the increase in SST, Ta and the processes parametrized by the AMO, EA/WR and AZOR indeces. For the cold period the indeces are AMO, Pol/Eur, SIB and ISL SIB. The interannual variations of the sea ice concentration field are characterized by close correlation with Ta changes both in the annual cycle and during the periods of ice cover formation and evolution (RΒ = –0,7... –0,9). For these periods we showed statistically significant relationships between the first EOF mode fluctuations and two climatic indeces β€” AMO (RΒ = 0,5) and Pol/Eur (RΒ = 0,4). The relationships between the temporary variability of the sea ice concentration and the wind field characteristics are weaker and statistically significant only for the meridional component of the wind speed (RΒ = –0,4).По Π΄Π°Π½Π½Ρ‹ΠΌ срочных наблюдСний Π½Π° гидромСтСорологичСских станциях РосгидромСта Π·Π° 1978–2017 Π³Π³., Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ интСрполяции ΠΈ Ρ€Π΅Π°Π½Π°Π»ΠΈΠ·Π° NOAA Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΌΠ΅ΠΆΠ³ΠΎΠ΄ΠΎΠ²ΠΎΠΉ измСнчивости повСрхностной Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π²ΠΎΠ΄Ρ‹ ΠΈ Π²ΠΎΠ·Π΄ΡƒΡ…Π° Π² ΠšΠ°Ρ€ΡΠΊΠΎΠΌ ΠΌΠΎΡ€Π΅ Π½Π° соврСмСнном этапС потСплСния ΠΊΠ»ΠΈΠΌΠ°Ρ‚Π°. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ кластСрного, коррСляционного Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° эмпиричСских ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для опрСдСлСния пространствСнно-Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ структуры поля Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΈ районирования Π°ΠΊΠ²Π°Ρ‚ΠΎΡ€ΠΈΠΈ ΠΏΠΎ особСнностям климатичСских ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π½ΠΎ-слСдствСнныС связи этих ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ с вариациями ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… поля Π²Π΅Ρ‚Ρ€Π°, климатичСскими индСксами ΠΈ ΡΠΏΠ»ΠΎΡ‡Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ льда. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΡƒΠ΄Π°Π»ΠΎΡΡŒ ΡƒΡ‚ΠΎΡ‡Π½ΠΈΡ‚ΡŒ ΠΊΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΠΉ ΠΈ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ особСнностСй ΠΌΠ΅ΠΆΠ³ΠΎΠ΄ΠΎΠ²ΠΎΠΉ измСнчивости тСрмичСских условий ΠšΠ°Ρ€ΡΠΊΠΎΠ³ΠΎ моря

    ΠžΡ†Π΅Π½ΠΊΠ° влияния наносСкундных рСнтгСновских ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΌΡ‹ΡˆΠ΅ΠΉ

    Get PDF
    The effect of nanosecond pulses of X-ray (pulse repetition rate of 8β€”22 pulses per second, dose 0,3β€”1,8 mR per pulse) on the functional activity of isolated mitochondria of mice liver. The effects of changing the rate of oxygen consumption by mitochondria in different metabolic states of Chance and the degree of coupling of oxidation and phosphorylation were investigated. That effect depends on the parameters of exposure.ИсслСдовано влияниС рСнтгСновских ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² наносСкундной Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ (частота повторСния 8β€”22 ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Π² сСкунду, Π΄ΠΎΠ·Π° Π² ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ΅ 0,3β€”1,8 ΠΌΠ ) Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΌΡ‹ΡˆΠ΅ΠΉ. Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΠΎΠ΅ воздСйствиС измСняСт ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ потрСблСния кислорода митохондриями Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… мСтаболичСских состояниях ΠΏΠΎ Чансу ΠΈ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ сопряТСния процСссов окислСния ΠΈ фосфорилирования. Π”Π°Π½Π½Ρ‹ΠΉ эффСкт зависит ΠΎΡ‚ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² воздСйствия

    Различия эфСктов ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎ-пСриодичСского рСнтгСновского излучСния Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π»ΠΈΠ½ΠΈΠΈ MOLT-4 ΠΈ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°Ρ… пСрифСричСской ΠΊΡ€ΠΎΠ²ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°

    Get PDF
    Effects of ionizing radiation registered in cells after low dose irradiation are still poorly understood. Thus, the aim of this study was to analyze effects of pulsed X-rays on level of radiation-induced DNA double-strand breaks and their repair kinetics in cancer and normalhuman cells in vitro. Analysis of radiation-induced Ξ³H2AX and 53BP1 repair foci in MOLT-4 cells with lymphoblastic origin was used for assessment of DNA double-strand breaks (DSB) in these cells. Number of residual radiation-induced Ξ³H2AX and 53BP1 foci at 18 hafter irradiation depended on frequency of X-ray pulses: at 8 pulses per second effect was highest in MOLT-4 cells and lowest in peripheral blood lymphocytes. It suggests that pulsed X-rays with various frequencies could be used for target influence on cancer cells being lessdeleterious for normal human cells.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ источники, способныС Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎ-пСриодичСскоС рСнтгСновскоС ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ (ИПРИ) Π² наносСкундном Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ с Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ измСнСния частоты повторСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² ΠΈ Π΄ΠΎΠ·Ρ‹ Π·Π° ΠΈΠΌΠΏΡƒΠ»ΡŒΡ. ЦСлью настоящСго исслСдования стал Π°Π½Π°Π»ΠΈΠ· воздСйствия ИПРИ Π½Π° ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Π΄Π²ΡƒΠ½ΠΈΡ‚Π΅Π²Ρ‹Ρ… Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ² Π”ΠΠš Π² ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² условиях in vitro. Для ΠΎΡ†Π΅Π½ΠΊΠΈ уровня Π΄Π²ΡƒΠ½ΠΈΡ‚Π΅Π²Ρ‹Ρ… Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ² Π”ΠΠš ΠΈ эффСктивности ΠΈΡ… Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ использовался ΠΌΠ΅Ρ‚ΠΎΠ΄ Π°Π½Π°Π»ΠΈΠ·Π° флуорСсцСнтных фокусов Π±Π΅Π»ΠΊΠΎΠ² Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π”ΠΠš Ξ³H2AX ΠΈ 53BP1 Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ MOLT-4, ΠΈΠΌΠ΅ΡŽΡ‰Π΅ΠΉ лимфобластноС происхоТдСниС, послС воздСйствия ИПРИ Π² условиях in vitro. Наибольший ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ фокусов Ξ³H2AX ΠΈ 53BP1 Ρ‡Π΅Ρ€Π΅Π· 18 Ρ‡ послС воздСйствия, ΡΠ²Π»ΡΡŽΡ‰ΠΈΠΉΡΡ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠΌ эффСктивности Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π”ΠΠš, Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π»ΠΈΠ½ΠΈΠΈ MOLT-4 отмСчался ΠΏΡ€ΠΈ воздСйствии ИПРИ с частотой повторСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² 8 ΠΈΠΌΠΏ./с, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°Π½Π΅Π΅ Π² Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°Ρ… наблюдалось наимСньшСС количСство Π΄Π²ΡƒΠ½ΠΈΡ‚Π΅Π²Ρ‹Ρ… Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ² Π”ΠΠš. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ использованиС ИПРИ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ частотами повторСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ΡŒΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ поврСТдая ΠΏΡ€ΠΈ этом Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°

    Π’Π›Π˜Π―ΠΠ˜Π• Π˜ΠœΠŸΠ£Π›Π¬Π‘ΠΠž-ΠŸΠ•Π Π˜ΠžΠ”Π˜Π§Π•Π‘ΠšΠžΠ“Πž Π Π•ΠΠ’Π“Π•ΠΠžΠ’Π‘ΠšΠžΠ“Πž Π˜Π—Π›Π£Π§Π•ΠΠ˜Π― НА ΠšΠ›Π•Π’ΠšΠ˜ ОПУΠ₯ΠžΠ›Π˜ И ΠšΠžΠ‘Π’ΠΠžΠ“Πž ΠœΠžΠ—Π“Π ΠœΠ«Π¨Π•Π™

    Get PDF
    The results of the effect of pulse-periodic X-ray exposure (PPXE) generated by Sinus-150 accelerator on tumor and normal cells of mice have been presented. Chromosomal aberrations (metaphase analysis) of bone marrow cells were studied. Using the cultured Lewis lung carcinoma cell lines, the level of apoptotic cells and cells with high concentration of active oxygen forms (AOF) was assessed by the flow cytofluorometry analysis (FACSCantoII, BD). In vivo X-ray radiation in the pulse-periodic mode lead to the moderate increase in chromosomal aberrations of bone marrow cells of mice. PPXE induced apoptotic death in Lewis lung carcinoma cells in vitro due to AOF production. Dose-effect relation was not observed at the irradiation doses 0.2–1.0 Gy. The data obtained show that further studies are necessary to justify the use of PPXE in tumor therapy.ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ изучСния влияния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎ-пСриодичСского рСнтгСновского излучСния (ИПРИ), Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌ источником «Бинус-150Β» (Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚ ΡΠΈΠ»ΡŒΠ½ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ элСктроники БО РАН, Π³. Вомск), Π½Π° ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. Π˜Π·ΡƒΡ‡Π°Π»ΠΈ хромосомныС Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΈ (ΠΌΠ΅Ρ‚Π°Ρ„Π°Π·Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ·) ΠΊΠ»Π΅Ρ‚ΠΎΠΊ костного ΠΌΠΎΠ·Π³Π° ΠΌΡ‹ΡˆΠ΅ΠΉ, ΠΎΠ±Π»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ИПРИ Π² Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ…, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹ΠΉ эффСкт. На ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Π›ΡŒΡŽΠΈΡ, ΠΎΠ±Π»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ИПРИ, ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с высоким содСрТаниСм Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода (АЀК) ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΡ„Π»ΡƒΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ (FACSCantoII, BD). ΠŸΡ€ΠΈ локальном ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠΈ ИПРИ in vivo Π² Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ…, Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹ΠΉ эффСкт, Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ ΡƒΠΌΠ΅Ρ€Π΅Π½Π½ΠΎΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π°Π±Π΅Ρ€Ρ€Π°Ρ†ΠΈΠΉ Π² хромосомах ΠΊΠ»Π΅Ρ‚ΠΎΠΊ костного ΠΌΠΎΠ·Π³Π° ΠΌΡ‹ΡˆΠ΅ΠΉ. ИПРИ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΡƒΠ΅Ρ‚ процСсс апоптотичСской Π³ΠΈΠ±Π΅Π»ΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Π»Π΅Π³ΠΊΠΈΡ… Π›ΡŒΡŽΠΈΡ in vitro Π·Π° счСт ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ АЀК. ΠŸΡ€ΠΈ этом Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 0,2–1,0 Π“Ρ€ Π½Π΅ отмСчаСтся зависимости эффСкта ΠΎΡ‚ Π΄ΠΎΠ·Ρ‹ облучСния. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ пСрспСктивности Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… исслСдований для обоснования использования ИПРИ Π² Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ

    ДСйствиС наносСкундного ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎ-пСриодичСского ΠΌΠΈΠΊΡ€ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ излучСния Π½Π° процСссы Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ

    Get PDF
    The effects of pulse periodic microwaves (10 GHz, duration of pulse 100 ns, pulse repetition frequency 4β€”19 pps, peak power density 40β€”1 520 W/cm2 ) on the reparative regeneration of full-thickness skin wounds on mice was investigated. This effect depends on the pulse repetition frequency and peak power density.ИсслСдовано влияниС ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎ-пСриодичСского ΠΌΠΈΠΊΡ€ΠΎΠ²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ³ΠΎ излучСния (10 Π“Π“Ρ†, Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² 100 нс, частота повторСния 4β€”19 ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² Π² сСкунду, пиковая ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‚ΠΎΠΊΠ° мощности 40β€”1 520 Π’Ρ‚/см2 ) Π½Π° Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΡƒΡŽ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΡŽ полнослойной ΠΊΠΎΠΆΠ½ΠΎΠΉ Ρ€Π°Π½Ρ‹ Ρƒ ΠΌΡ‹ΡˆΠ΅ΠΉ. Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΠΎΠ΅ воздСйствиС ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π·Π°ΠΆΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Ρ€Π°Π½. Π”Π°Π½Π½Ρ‹ΠΉ эффСкт зависит ΠΎΡ‚ частоты повторСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΠΈΠΊΠΎΠ²ΠΎΠΉ плотности ΠΏΠΎΡ‚ΠΎΠΊΠ° мощности
    • …
    corecore