12,684 research outputs found

    New LHCb pentaquarks as hadrocharmonium states

    Full text link
    New LHCb Collaboration results on pentaquarks with hidden charm [1] are discussed. These results fit nicely in the hadrocharmonium pentaquark scenario [2,3]. In the new data the old LHCb pentaquark Pc(4450)P_c(4450) splits into two states Pc(4440)P_c(4440) and Pc(4457)P_c(4457). We interpret these two almost degenerate hadrocharmonium states with JP=1/2βˆ’J^P=1/2^- and JP=3/2βˆ’J^P=3/2^- as a result of hyperfine splitting between hadrocharmonium states predicted in [2]. It arises due to QCD multipole interaction between color-singlet hadrocharmonium constituents. We improve the theoretical estimate of hyperfine splitting [2,3] that is compatible with the experimental data. The new Pc(4312)P_c(4312) state finds a natural explanation as a bound state of Ο‡c0\chi_{c0} and a nucleon, with I=1/2I=1/2, JP=1/2+J^P=1/2^+ and binding energy 42 MeV. As a bound state of a spin-zero meson and a nucleon, hadrocharmonium pentaquark Pc(4312)P_c(4312) does not experience hyperfine splitting. We find a series of hadrocharmonium states in the vicinity of the wide Pc(4380)P_c(4380) pentaquark that can explain its apparently large decay width. We compare the hadrocharmonium and molecular pentaquark scenarios and discuss their relative advantages and drawbacks.Comment: 10 page

    Pentaquarks with hidden charm as hadroquarkonia

    Get PDF
    We consider hidden charm pentaquarks as hadroquarkonium states in a QCD inspired approach. Pentaquarks arise naturally as bound states of quarkonia excitations and ordinary baryons. The LHCb Pc(4450)P_c(4450) pentaquark is interpreted as a Οˆβ€²\psi'-nucleon bound state with spin-parity JP=3/2βˆ’J^P=3/2^-. The partial decay width Ξ“(Pc(4450)β†’J/ψ+N)β‰ˆ11\Gamma(P_c(4450)\to J/\psi+N)\approx 11 MeV is calculated and turned out to be in agreement with the experimental data for Pc(4450)P_c(4450). The Pc(4450)P_c(4450) pentaquark is predicted to be a member of one of the two almost degenerate hidden-charm baryon octets with spin-parities JP=1/2βˆ’,3/2βˆ’J^{P}=1/2^-,3/2^-. The masses and decay widths of the octet pentaquarks are calculated. The widths are small and comparable with the width of the Pc(4450)P_c(4450) pentaquark, and the masses of the octet pentaquarks satisfy the Gell-Mann-Okubo relation. Interpretation of pentaquarks as loosely bound Ξ£cDΛ‰βˆ—\Sigma_c\bar D^* and Ξ£cβˆ—DΛ‰βˆ—\Sigma_c^*\bar D^* deuteronlike states is also considered. We determine quantum numbers of these bound states and calculate their masses in the one-pion exchange scenario. The hadroquarkonium and molecular approaches to exotic hadrons are compared and the relative advantages and drawbacks of each approach are discussed.Comment: 33 pages, 2 figures, 3, tables; Minor changes, 2 references added; Version published in Eur. Phys. J.

    Continuum in the spin excitation spectrum of a Haldane chain, observed by neutron scattering in CsNiCl3

    Full text link
    The spin excitation continuum, expected to dominate the low-energy fluctuation spectrum in the Haldane spin chain around the Brillouin zone center, q=0, is directly observed by inelastic magnetic neutron scattering in the S=1 quasi-1D antiferromagnet CsNiCl3. We find that the single mode approximation fails, and that a finite energy width appears in the dynamic correlation function S(q,omega) for q < 0.5pi. The width increases with decreasing q, while S(q,omega) acquires an asymmetric shape qualitatively similar to that predicted for the 2-magnon continuum in the nonlinear sigma-model.Comment: 4 pages, 3 figures, submitted to PR

    Active shielding of magnetic field with circular space-time characteristic

    Get PDF
    Aim. The synthesis of two degree of freedom robust two circuit system of active shielding of magnetic field with circular spacetime characteristic, generated by overhead power lines with "triangle" type of phase conductors arrangements for reducing the magnetic flux density to the sanitary standards level and to reducing the sensitivity of the system to plant parameters uncertainty. Methodology. The synthesis is based on the multi-criteria game decision, in which the payoff vector is calculated on the basis of the Maxwell equations quasi-stationary approximation solutions. The game decision is based on the stochastic particles multiswarm optimization algorithms. The initial parameters for the synthesis by system of active shielding are the location of the overhead power lines with respect to the shielding space, geometry and number of shielding coils, operating currents, as well as the size of the shielding space and magnetic flux density normative value, which should be achieved as a result of shielding. The objective of the synthesis is to determine their number, configuration, spatial arrangementand and shielding coils currents, setting algorithm of the control systems as well as the resulting of the magnetic flux density value at the shielding space. Results. Computer simulation and field experimental research results of two degree of freedom robust two circuit system of active shielding of magnetic field, generated by overhead power lines with Β«triangleΒ» type of phase conductors arrangements are given. The possibility of initial magnetic flux density level reducing and system sensitivity reducing to the plant parameters uncertainty is shown. Originality. For the first time the synthesis, theoretical and experimental research of two degree of freedom robust two -circuit t system of active shielding of magnetic field generated by single-circuit overhead power line with phase conductors triangular arrangements carried out. Practical value. Practical recommendations from the point of view of the practical implementation on reasonable choice of the spatial arrangement of two shielding coils of robust two -circuit system of active shielding of the magnetic field with circular space-time characteristic generated by single-circuit overhead power line with phase conductors triangular arrangements are given.ЦСль. Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ робастной Π΄Π²ΡƒΡ…ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ систСмы Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ экранирования ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля с ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠΉ пространствСнно-Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ характСристикой, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ элСктропСрСдачи с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ подвСсом ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ² для сниТСния ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π΄ΠΎ уровня санитарных Π½ΠΎΡ€ΠΌ ΠΈ для сниТСния Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ систСмы ΠΊ нСопрСдСлСнности ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° управлСния. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ. Π‘ΠΈΠ½Ρ‚Π΅Π· основан Π½Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ стохастичСской ΠΈΠ³Ρ€Ρ‹, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ Π²Ρ‹ΠΈΠ³Ρ€Ρ‹Ρˆ вычисляСтся Π½Π° основании Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ МаксвСлла Π² квазистационарном ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ. РСшСниС ΠΈΠ³Ρ€Ρ‹ находится Π½Π° основС Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² стохастичСской ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠ°Π³Π΅Π½Ρ‚Π½ΠΎΠΉ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡ€ΠΎΠ΅ΠΌ частиц. Π˜ΡΡ…ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ для синтСза систСмы Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ экранирования ΡΠ²Π»ΡΡŽΡ‚ΡΡ располоТСниС Π²Ρ‹ΡΠΎΠΊΠΎΠ²ΠΎΠ»ΡŒΡ‚Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΉ элСктропСрСдачи ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ экранируСмому пространству, гСомСтричСскиС Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹, количСство ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ² ΠΈ Ρ€Π°Π±ΠΎΡ‡ΠΈΠ΅ Ρ‚ΠΎΠΊΠΈ Π»ΠΈΠ½ΠΈΠΈ элСктропСрСдачи, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ экранируСмого пространства ΠΈ Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ достигнуто Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ экранирования. Π—Π°Π΄Π°Ρ‡Π΅ΠΉ синтСза являСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ количСства, ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ, пространствСнного располоТСния ΠΈ Ρ‚ΠΎΠΊΠΎΠ² ΡΠΊΡ€Π°Π½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΎΠ±ΠΌΠΎΡ‚ΠΎΠΊ, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Ρ€Π°Π±ΠΎΡ‚Ρ‹ систСмы управлСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ значСния ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π² экранируСмом пространствС. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ тСорСтичСских ΠΈ ΠΏΠΎΠ»Π΅Π²Ρ‹Ρ… ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ робастной Π΄Π²ΡƒΡ…ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ систСмы Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ экранирования ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ элСктропСрСдачи с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ подвСсом ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ². Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ сниТСния уровня ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ исходного ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π²Π½ΡƒΡ‚Ρ€ΠΈ экранируСмого пространства ΠΈ сниТСния Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ систСмы ΠΊ нСопрСдСлСнностям ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° управлСния. ΠžΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ синтСз, тСорСтичСскиС ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ исслСдования ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ робастной Π΄Π²ΡƒΡ…ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ систСмы Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ экранирования ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΎΠ΄Π½ΠΎΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ элСктропСрСдачи с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ подвСсом ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ². ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ практичСскиС Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎ обоснованному Π²Ρ‹Π±ΠΎΡ€Ρƒ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния практичСской Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ пространствСнного располоТСния Π΄Π²ΡƒΡ… ΡΠΊΡ€Π°Π½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΎΠ±ΠΌΠΎΡ‚ΠΎΠΊ Π΄Π²ΡƒΡ…ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ робастной систСмы Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ экранирования ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля с ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠΉ пространствСнно-Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ характСристикой, создаваСмого ΠΎΠ΄Π½ΠΎΠΊΠΎΠ½Ρ‚ΡƒΡ€Π½ΠΎΠΉ Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ элСктропСрСдачи с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ подвСсом ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ²
    • …
    corecore