415 research outputs found
Optical Spin Orientation in Strained Superlattices
Optical orientation in the strained semiconductor superlattices is
investigated theoretically. The dependence of the features in spin-polarization
spectra on the structure parameters is clarified. The value of polarization in
the first polarization maximum in the SL structures is shown to grow with the
splitting between the hh- and lh- states of the valence band, the joint strain
and confinement effects on the hh1- lh1 splitting being strongly influenced by
the tunneling in the barriers. In strained structures with high barriers for
the holes initial polarization can exceed 95 %. Calculated polarization spectra
are close to the experimental spectra of polarized electron emission.Comment: 20 pages, 8 figure
Distributed automatic control of technological processes in conditions of weightlessness
Some problems associated with the automatic control of liquid metal and plasma systems under conditions of weightlessness are examined, with particular reference to the problem of stability of liquid equilibrium configurations. The theoretical fundamentals of automatic control of processes in electrically conducting continuous media are outlined, and means of using electromagnetic fields for simulating technological processes in a space environment are discussed
Weak localization of holes in high-mobility heterostructures
Theory of weak localization is developed for two-dimensional holes in
semiconductor heterostructures. Ballistic regime of weak localization where the
backscattering occurs from few impurities is studied with account for
anisotropic momentum scattering of holes. The transition from weak localization
to anti-localization is demonstrated for long dephasing times. For stronger
dephasing the conductivity correction is negative at all hole densities due to
non-monotonous dependence of the spin relaxation time on the hole wavevector.
The anomalous temperature dependent correction to the conductivity is
calculated. We show that the temperature dependence of the conductivity is
non-monotonous at moderate hole densities.Comment: 5 pages, 4 figure
Theory of acceptor-ground-state description and hot photoluminescence in cubic semiconductors
An approach to the theory of the acceptor ground state in cubic semiconductors is presented. The model has been developed within the framework of the four-band effective Luttinger Hamiltonian and is applicable for both Coulomb and non-Coulomb accepters. The system of integral equations for the ground-state wave functions has been derived and its solution has been numerically computed. We present the general form of the acceptor-ground-state wave function. The wave functions for a set of acceptor dopants in GaAs are calculated with an accuracy of 2%. The obtained wave functions have been used for qualitative and quantitative analysis of the hot photoluminescence (HPL) spectra and linear polarization in GaAs crystals. Analytical expressions for the line shape and anisotropy of the linear polarization degree have been derived. The dependencies of the HPL characteristics on the excitation energy as well as on the acceptor binding energy have been analyzed. The HPL theory presented allows us to describe the wide spectrum of available experimental data
Habitation layers and pedogenic processes in forest-steppe riverine valleys west of the don: the case of iIyinka
A mesolithic site with an intrusive early medieval burial at Ilyinka in the Don basin is described. On the basis of soil analysis, environment and climate are reconstructed with reference to chronology and cultural attributio
Characterization of deep impurities in semiconductors by terahertz tunneling ionization
Tunneling ionization in high frequency fields as well as in static fields is suggested as a method for the characterization of deep impurities in semiconductors. It is shown that an analysis of the field and temperature dependences of the ionization probability allows to obtain defect parameters like the charge of the impurity, tunneling times, the Huang–Rhys parameter, the difference between optical and thermal binding energy, and the basic structure of the defect adiabatic potentials. Compared to static fields, high frequency electric fields in the terahertz-range offer various advantages, as they can be applied contactlessly and homogeneously even to bulk samples using the intense radiation of a high power pulsed far-infrared laser. Furthermore, impurity ionization with terahertz radiation can be detected as photoconductive signal with a very high sensitivity in a wide range of electric field strengths
Theorem about the number and structure of the singular points n-dimensional dynamical system of population dynamics Lotka-Volterra in context of informational analysis and modeling
By elementary methods of combinatorial mathematics and uniqueness of solutions systems of linear algebraic equations for non degenerate cases proved a theorem about the number and structure of the singular points of n-dimensional dynamical system of population a dynamics Lotka-Volterra model. Showed that the number of singular points for this system is equal to 2 and their structure on a combination of zero nand nonzero coordinates coincides with the binomial coefficientsyesBelgorod State Universit
Statistical forecasting of panel data based on state space models
Panel (or longitudinal) data describes a set of objects which are observed during certain period of time, so they
consist of repeated observations of the same objects in sequential time periods. The following examples of panel
data can be mentioned: annual household studies, monthly performance indicators for economic institutions and
many others. In this study we provide another approach to forecasting cross-sectional data based on state space
models together with Kalman filtering procedure
Manipulation of the Spin Memory of Electrons in n-GaAs
We report on the optical manipulation of the electron spin relaxation time in
a GaAs based heterostructure. Experimental and theoretical study shows that the
average electron spin relaxes through hyperfine interaction with the lattice
nuclei, and that the rate can be controlled by the electron-electron
interactions. This time has been changed from 300 ns down to 5 ns by variation
of the laser frequency. This modification originates in the optically induced
depletion of n-GaAs layer
- …