5,354 research outputs found

    Reversible Vortex Ratchet Effects and Ordering in Superconductors with Simple Asymmetric Potential Arrays

    Full text link
    We demonstrate using computer simulations that the simplest vortex ratchet system for type-II superconductors with artificial pinning arrays, an asymmetric one-dimensional (1D) potential array, exhibits the same features as more complicated two-dimensional vortex ratchets that have been studied in recent experiments. We show that the 1D geometry, originally proposed by Lee et al. [Nature 400, 337 (1999)], undergoes multiple reversals in the sign of the ratchet effect as a function of vortex density, substrate strength, and ac drive amplitude, and that the sign of the ratchet effect is related to the type of vortex lattice structure present. When the vortex lattice is highly ordered, an ordinary vortex ratchet effect occurs which is similar to the response of an isolated particle in the same ratchet geometry. In regimes where the vortices form a smectic or disordered phase, the vortex-vortex interactions are relevant and we show with force balance arguments that the ratchet effect can reverse in sign. The dc response of this system features a reversible diode effect and a variety of vortex states including triangular, smectic, disordered and square.Comment: 10 pages, 12 postscript figures. Version to appear in Phys. Rev.

    Diffuse interface approach to brittle fracture

    Get PDF
    We present a continuum model for the propagation of cracks and fractures in brittle materials. The components of the strain tensor ϵ\epsilon are the fundamental variables. The evolution equations are based on a free energy that reduces to that of linear elasticity for small ϵ\epsilon, and accounts for cracks through energy saturation at large values of ϵ\epsilon. We regularize the model by including terms dependent on gradients of ϵ\epsilon in the free energy. No additional fields others than the strain tensor ϵ\epsilon are introduced, and then the whole dynamics is perfectly defined. We validate the model in controlled cases, and present a couple of non trivial applications.Comment: Version to appear in PRE, Vol. 71, February, 14 pages, 11 figure

    Disrupting the wall accumulation of human sperm cells by artificial corrugation

    Get PDF
    Many self-propelled microorganisms are attracted to surfaces. This makes their dynamics in restricted geometries very different from that observed in the bulk. Swimming along walls is beneficial for directing and sorting cells, but may be detrimental if homogeneous populations are desired, such as in counting microchambers. In this work, we characterize the motion of human sperm cells 60μm60 \mu m long, strongly confined to 25μm25 \mu m shallow chambers. We investigate the nature of the cell trajectories between the confining surfaces and their accumulation near the borders. Observed cell trajectories are composed of a succession of quasi-circular and quasi-linear segments. This suggests that the cells follow a path of intermittent trappings near the top and bottom surfaces separated by stretches of quasi-free motion in between the two surfaces, as confirmed by depth resolved confocal microscopy studies. We show that the introduction of artificial petal-shaped corrugation in the lateral boundaries removes the tendency of cells to accumulate near the borders, an effect which we hypothesize may be valuable for microfluidic applications in biomedicine.Comment: 9 pages, latex. In accepted version on April 14, v2: abstract modified, information added to Sec. II.A and experiments added to Sec. III.A and Fig.3. Sec. III.C was deleted. Requested references adde

    Transverse rectification of disorder-induced fluctuations in a driven system

    Full text link
    We study numerically the overdamped motion of particles driven in a two dimensional ratchet potential. In the proposed design, of the so-called geometrical-ratchet type, the mean velocity of a single particle in response to a constant force has a transverse component that can be induced by the presence of thermal or other unbiased fluctuations. We find that additional quenched disorder can strongly enhance the transverse drift at low temperatures, in spite of reducing the transverse mobility. We show that, under general conditions, the rectified transverse velocity of a driven particle fluid is equivalent to the response of a one dimensional flashing ratchet working at a drive-dependent effective temperature, defined through generalized Einstein relations.Comment: 4.5 pages, 3 fig

    Voltage rectification effects in mesoscopic superconducting triangles: experiment and modelling

    Full text link
    The interaction of externally applied currents with persistent currents induced by magnetic field in a mesoscopic triangle is investigated. As a consequence of the superposition of these currents, clear voltage rectification effects are observed. We demonstrate that the amplitude of the rectified signal strongly depends on the configurations of the current leads with the lowest signal obtained when the contacts are aligned along a median of the triangle. When the contacts are aligned off-centered compared to the geometrical center, the voltage response shows oscillations as a function of the applied field, whose sign can be controlled by shifting the contacts. These results are in full agreement with theoretical predictions for an analogous system consisting of a closed loop with a finite number of identical Josephson junctions.Comment: 5 pages, 4 figures, published in Phys. Rev.

    High resolution spectroscopic analysis of seven giants in the bulge globular cluster NGC 6723

    Get PDF
    Globular clusters associated with the Galactic bulge are important tracers of stellar populations in the inner Galaxy. High resolution analysis of stars in these clusters allows us to characterize them in terms of kinematics, metallicity, and individual abundances, and to compare these fingerprints with those characterizing field populations. We present iron and element ratios for seven red giant stars in the globular cluster NGC~6723, based on high resolution spectroscopy. High resolution spectra (R48 000R\sim48~000) of seven K giants belonging to NGC 6723 were obtained with the FEROS spectrograph at the MPG/ESO 2.2m telescope. Photospheric parameters were derived from 130\sim130 FeI and FeII transitions. Abundance ratios were obtained from line-to-line spectrum synthesis calculations on clean selected features. An intermediate metallicity of [Fe/H]=0.98±0.08=-0.98\pm0.08 dex and a heliocentric radial velocity of vhel=96.6±1.3 kms1v_{hel}=-96.6\pm1.3~km s^{-1} were found for NGC 6723. Alpha-element abundances present enhancements of [O/Fe]=0.29±0.18[O/Fe]=0.29\pm0.18 dex, [Mg/Fe]=0.23±0.10[Mg/Fe]=0.23\pm0.10 dex, [Si/Fe]=0.36±0.05[Si/Fe]=0.36\pm0.05 dex, and [Ca/Fe]=0.30±0.07[Ca/Fe]=0.30\pm0.07 dex. Similar overabundance is found for the iron-peak Ti with [Ti/Fe]=0.24±0.09[Ti/Fe]=0.24\pm0.09 dex. Odd-Z elements Na and Al present abundances of [Na/Fe]=0.00±0.21[Na/Fe]=0.00\pm0.21 dex and [Al/Fe]=0.31±0.21[Al/Fe]=0.31\pm0.21 dex, respectively. Finally, the s-element Ba is also enhanced by [Ba/Fe]=0.22±0.21[Ba/Fe]=0.22\pm0.21 dex. The enhancement levels of NGC 6723 are comparable to those of other metal-intermediate bulge globular clusters. In turn, these enhancement levels are compatible with the abundance profiles displayed by bulge field stars at that metallicity. This hints at a possible similar chemical evolution with globular clusters and the metal-poor of the bulge going through an early prompt chemical enrichment

    On a new theoretical framework for RR Lyrae stars I: the metallicity dependence

    Get PDF
    We present new nonlinear, time-dependent convective hydrodynamical models of RR Lyrae stars computed assuming a constant helium-to-metal enrichment ratio and a broad range in metal abundances (Z=0.0001--0.02). The stellar masses and luminosities adopted to construct the pulsation models were fixed according to detailed central He burning Horizontal Branch evolutionary models. The pulsation models cover a broad range in stellar luminosity and effective temperatures and the modal stability is investigated for both fundamental and first overtones. We predict the topology of the instability strip as a function of the metal content and new analytical relations for the edges of the instability strip in the observational plane. Moreover, a new analytical relation to constrain the pulsation mass of double pulsators as a function of the period ratio and the metal content is provided. We derive new Period-Radius-Metallicity relations for fundamental and first-overtone pulsators. They agree quite well with similar empirical and theoretical relations in the literature. From the predicted bolometric light curves, transformed into optical (UBVRI) and near-infrared (JHK) bands, we compute the intensity-averaged mean magnitudes along the entire pulsation cycle and, in turn, new and homogenous metal-dependent (RIJHK) Period-Luminosity relations. Moreover, we compute new dual and triple band optical, optical--NIR and NIR Period-Wesenheit-Metallicity relations. Interestingly, we find that the optical Period-W(V,B-V) is independent of the metal content and that the accuracy of individual distances is a balance between the adopted diagnostics and the precision of photometric and spectroscopic datasets.Comment: 51 pages, 20 figures, 9 tables, accepted for publication on Ap

    Predicted properties of RR Lyrae stars in the SDSS photometric system

    Get PDF
    The luminosities and effective temperatures, as well as the whole bolometric lightcurves of nonlinear convective RR Lyrae models with 0.0001<Z<0.006 are transformed into the SDSS photometric system. The obtained ugriz lightcurves, mean magnitudes and colors, pulsation amplitudes and color-color loops are shown and analytical relations connecting pulsational to intrinsic stellar parameters, similarly to the ones currently used in the Johnson-Cousins filters, are derived. Finally the behaviour in the color-color planes is compared with available observations in the literature and possible systematic uncertainties affecting this comparison are discussed.Comment: accepted for publication in MNRA

    Variable stars and stellar populations in Andromeda XXI: II. Another merged galaxy satellite of M31?

    Get PDF
    B and V time-series photometry of the M31 dwarf spheroidal satellite Andromeda XXI (And XXI) was obtained with the Large Binocular Cameras at the Large Binocular Telescope. We have identified 50 variables in And XXI, of which 41 are RR Lyrae stars (37 fundamental-mode RRab, and 4 first-overtone RRc, pulsators) and 9 are Anomalous Cepheids (ACs). The average period of the RRab stars ( = 0.64 days) and the period-amplitude diagram place And~XXI in the class of Oosterhoff II - Oosterhoff-Intermediate objects. From the average luminosity of the RR Lyrae stars we derived the galaxy distance modulus of (m-M)0_0=24.40±0.1724.40\pm0.17 mag, which is smaller than previous literature estimates, although still consistent with them within 1 σ\sigma. The galaxy color-magnitude diagram shows evidence for the presence of three different stellar generations in And~XXI: 1) an old (\sim 12 Gyr) and metal poor ([Fe/H]=-1.7 dex) component traced by the RR Lyrae stars; 2) a slightly younger (10-6 Gyr) and more metal rich ([Fe/H]=-1.5 dex) component populating the red horizontal branch, and 3) a young age (\sim 1 Gyr) component with same metallicity, that produced the ACs. Finally, we provide hints that And~XXI could be the result of a minor merging event between two dwarf galaxies.Comment: accepted for publications in Ap
    corecore