105 research outputs found

    Whole exome sequencing identifies a mutation in thrombomodulin as the genetic cause of a suspected platelet disorder in a family with normal platelet function

    Get PDF
    Here, we describe a mother and son with a lifelong bleeding tendency and posttraumatic bleeding who were recruited to the UK Genotyping and Phenotyping of Platelets (GAPP) study with a suspected platelet function disorder. However, despite a clinically significant bleeding score, both had normal platelet counts and normal platelet function. The patients’ blood was analyzed by light transmission aggregometry and genotyping by whole exome sequencing, as outlined by the GAPP study. Approximately 25 000 genetic variants were found for each patient as a result of sequencing and were filtered using a specialized bioinformatics pipeline. A heterozygous variant displaying autosomal dominant inheritance (c.1611 C>A) was found in the gene THBD which encodes the glycoprotein thrombomodulin. This sequence change results in a stop codon (p.Cys537Stop) and truncation of the protein and has been previously described in two other families with bleeding events which suggests it may be a recurrent mutation. In summary, this study shows that patients with a suspected platelet disorder but who present with a normal pattern of platelet aggregation should be investigated for defects in nonplatelet genes

    Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects

    Get PDF
    Inherited thrombocytopenias are a heterogeneous group of disorders characterised by abnormally low platelet counts which can be associated with abnormal bleeding. Next generation sequencing has previously been employed in these disorders for the confirmation of suspected genetic abnormalities, and more recently in the discovery of novel disease causing genes. However its full potential has not previously been utilised. Over the past 6 years we have sequenced the exomes from 55 patients, including 37 index cases and 18 additional family members, all of whom were recruited to the UK Genotyping and Phenotyping of Platelets study. All patients had inherited or sustained thrombocytopenia of unknown aetiology with platelet counts varying from 11-186x109 /L. Of the 51 patients phenotypically tested, 37 (73%), had an additional secondary qualitative platelet defect. Using whole exome sequencing analysis we have identified “pathogenic” or “likely pathogenic” variants in 46% (17/37) of our index patients with thrombocytopenia. In addition, we report variants of uncertain significance in 12 index cases which include novel candidate genetic variants in previously unreported genes in four index cases. These results demonstrate that whole exome sequencing is an efficient method for elucidating potential pathogenic genetic variants in inherited thrombocytopenia. Whole exome sequencing also has the added benefit of discovering potentially pathogenic genetic variants for further study in novel genes not previously implicated in inherited thrombocytopenia

    Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice.

    Get PDF
    Small non-coding RNAs (sncRNAs) are potential vectors at the interface between genes and environment. We found that traumatic stress in early life altered mouse microRNA (miRNA) expression, and behavioral and metabolic responses in the progeny. Injection of sperm RNAs from traumatized males into fertilized wild-type oocytes reproduced the behavioral and metabolic alterations in the resulting offspring.We thank M. Rassoulzadegan and V. Grandjean for help with the sperm purification, F. Manuella and H. Hörster for assistance with the MSUS paradigm, H. Welzl for help with behavior, G. Vernaz for help with western blotting, R. Tweedie-Cullen and P. Nanni for help with mass spectrometry, A. Patrignani for advice on DNA and RNA quality assessment, and A. Chen and A. Brunner for constructive discussions. This work was supported by the Austrian Academy of Sciences, the University of Zürich, the Swiss Federal Institute of Technology, Roche, the Swiss National Science Foundation, and The National Center of Competence in Research “Neural Plasticity and Repair”. P.S. was supported by a Gonville and Caius College fellowship.This is the accepted manuscript. The final version is available in Nature Neuroscience 17, 667–669 (2014), doi:10.1038/nn.369

    Long-Term Effects of the Periconception Period on Embryo Epigenetic Profile and Phenotype: The Role of Stress and How This Effect Is Mediated

    Get PDF
    Stress represents an unavoidable aspect of human life, and pathologies associated with dysregulation of stress mechanisms - particularly psychiatric disorders - represent a significant global health problem. While it has long been observed that levels of stress experienced in the periconception period may greatly affect the offspring's risk of psychiatric disorders, the mechanisms underlying these associations are not yet comprehensively understood. In order to address this question, this chapter will take a 'top-down' approach, by first defining stress and associated concepts, before exploring the mechanistic basis of the stress response in the form of the hypothalamic-pituitary-adrenal (HPA) axis, and how dysregulation of the HPA axis can impede our mental and physical health, primarily via imbalances in glucocorticoids (GCs) and their corresponding receptors (GRs) in the brain. The current extent of knowledge pertaining to the impact of stress on developmental programming and epigenetic inheritance is then extensively discussed, including the role of chromatin remodelling associated with specific HPA axis-related genes and the possible role of regulatory RNAs as messengers of environmental stress both in the intrauterine environment and across the germ line. Furthering our understanding of the role of stress on embryonic development is crucial if we are to increase our predictive power of disease risk and devise-effective treatments and intervention strategies

    Parallel reverse genetic screening in mutant human cells using transcriptomics

    No full text
    Reverse genetic screens have driven gene annotation and target discovery in model organisms. However, many disease‐relevant genotypes and phenotypes cannot be studied in lower organisms. It is therefore essential to overcome technical hurdles associated with large‐scale reverse genetics in human cells. Here, we establish a reverse genetic approach based on highly robust and sensitive multiplexed RNA sequencing of mutant human cells. We conduct 10 parallel screens using a collection of engineered haploid isogenic cell lines with knockouts covering tyrosine kinases and identify known and unexpected effects on signaling pathways. Our study provides proof of concept for a scalable approach to link genotype to phenotype in human cells, which has broad applications. In particular, it clears the way for systematic phenotyping of still poorly characterized human genes and for systematic study of uncharacterized genomic features associated with human disease

    Parallel Reverse Genetic Screening in Mutant Human Cells Using Transcriptomics

    No full text
    Reverse genetic screens have driven gene annotation and target discovery in model organisms. However, many disease‐relevant genotypes and phenotypes cannot be studied in lower organisms. It is therefore essential to overcome technical hurdles associated with large‐scale reverse genetics in human cells. Here, we establish a reverse genetic approach based on highly robust and sensitive multiplexed RNA sequencing of mutant human cells. We conduct 10 parallel screens using a collection of engineered haploid isogenic cell lines with knockouts covering tyrosine kinases and identify known and unexpected effects on signaling pathways. Our study provides proof of concept for a scalable approach to link genotype to phenotype in human cells, which has broad applications. In particular, it clears the way for systematic phenotyping of still poorly characterized human genes and for systematic study of uncharacterized genomic features associated with human disease
    corecore